
Serverless Architectures
with AWS Lambda

Overview and Best Practices

November 2017

© 2017, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices
This document is provided for informational purposes only. It represents AWS’s
current product offerings and practices as of the date of issue of this document,
which are subject to change without notice. Customers are responsible for
making their own independent assessment of the information in this document
and any use of AWS’s products or services, each of which is provided “as is”
without warranty of any kind, whether express or implied. This document does
not create any warranties, representations, contractual commitments,
conditions or assurances from AWS, its affiliates, suppliers or licensors. The
responsibilities and liabilities of AWS to its customers are controlled by AWS
agreements, and this document is not part of, nor does it modify, any agreement
between AWS and its customers.

Contents
Introduction - What Is Serverless? 1

AWS Lambda—the Basics 2

AWS Lambda—Diving Deeper 4

Lambda Function Code 5

Lambda Function Event Sources 9

Lambda Function Configuration 14

Serverless Best Practices 21

Serverless Architecture Best Practices 21

Serverless Development Best Practices 34

Sample Serverless Architectures 42

Conclusion 42

Contributors 43

Abstract
Since its introduction at AWS re:Invent in 2014, AWS Lambda has continued to
be one of the fastest growing AWS services. With its arrival, a new application
architecture paradigm was created—referred to as serverless. AWS now
provides a number of different services that allow you to build full application
stacks without the need to manage any servers. Use cases like web or mobile
backends, real-time data processing, chatbots and virtual assistants, Internet of
Things (IoT) backends, and more can all be fully serverless. For the logic layer
of a serverless application, you can execute your business logic using AWS
Lambda. Developers and organizations are finding that AWS Lambda is
enabling much faster development speed and experimentation than is possible
when deploying applications in a traditional server-based environment.

This whitepaper is meant to provide you with a broad overview of AWS Lambda,
its features, and a slew of recommendations and best practices for building your
own serverless applications on AWS.

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 1

Introduction - What Is Serverless?
Serverless most often refers to serverless applications. Serverless applications
are ones that don't require you to provision or manage any servers. You can
focus on your core product and business logic instead of responsibilities like
operating system (OS) access control, OS patching, provisioning, right-sizing,
scaling, and availability. By building your application on a serverless platform,
the platform manages these responsibilities for you.

For service or platform to be considered serverless, it should provide the
following capabilities:

• No server management – You don’t have to provision or maintain
any servers. There is no software or runtime to install, maintain, or
administer.

• Flexible scaling – You can scale your application automatically or by
adjusting its capacity through toggling the units of consumption (for
example, throughput, memory) rather than units of individual servers.

• High availability – Serverless applications have built-in availability
and fault tolerance. You don't need to architect for these capabilities
because the services running the application provide them by default.

• No idle capacity – You don't have to pay for idle capacity. There is no
need to pre-provision or over-provision capacity for things like compute
and storage. There is no charge when your code isn’t running.

The AWS Cloud provides many different services that can be components of a
serverless application. These include capabilities for:

• Compute – AWS Lambda1

• APIs – Amazon API Gateway2

• Storage – Amazon Simple Storage Service (Amazon S3)3

• Databases –Amazon DynamoDB4

• Interprocess messaging – Amazon Simple Notification Service (Amazon
SNS)5 and Amazon Simple Queue Service (Amazon SQS)6

• Orchestration – AWS Step Functions7 and Amazon CloudWatch Events8

https://aws.amazon.com/lambda
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/s3/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/sns/
https://aws.amazon.com/sns/
https://aws.amazon.com/sqs/
https://aws.amazon.com/step-functions/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/events/WhatIsCloudWatchEvents.html

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 2

• Analytics – Amazon Kinesis9

This whitepaper will focus on AWS Lambda, the compute layer of your
serverless application where your code is executed, and the AWS developer tools
and services that enable best practices when building and maintaining
serverless applications with Lambda.

AWS Lambda—the Basics
Lambda is a high-scale, provision-free serverless compute offering based on
functions. It provides the cloud logic layer for your application. Lambda
functions can be triggered by a variety of events that occur on AWS or on
supporting third-party services. They enable you to build reactive, event-driven
systems. When there are multiple, simultaneous events to respond to, Lambda
simply runs more copies of the function in parallel. Lambda functions scale
precisely with the size of the workload, down to the individual request. Thus, the
likelihood of having an idle server or container is extremely low. Architectures
that use Lambda functions are designed to reduce wasted capacity.

Lambda can be described as a type of serverless Function-as-a-Service (FaaS).
FaaS is one approach to building event-driven computing systems. It relies on
functions as the unit of deployment and execution. Serverless FaaS is a type of
FaaS where no virtual machines or containers are present in the programming
model and where the vendor provides provision-free scalability and built-in
reliability.

Figure 1 shows the relationship among event-driven computing, FaaS, and
serverless FaaS.

https://aws.amazon.com/kinesis/

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 3

Figure 1: The relationship among event-driven computing, FaaS, and serverless
FaaS

With Lambda, you can run code for virtually any type of application or backend
service. Lambda runs and scales your code with high availability.

Each Lambda function you create contains the code you want to execute, the
configuration that defines how your code is executed and, optionally, one or
more event sources that detect events and invoke your function as they occur.
These elements are covered in more detail in the next section.

An example event source is API Gateway, which can invoke a Lambda function
anytime an API method created with API Gateway receives an HTTPS request.
Another example is Amazon SNS, which has the ability to invoke a Lambda
function anytime a new message is posted to an SNS topic. Many event source
options can trigger your Lambda function. For the full list, see this
documentation.10 Lambda also provides a RESTful service API, which includes
the ability to directly invoke a Lambda function.11 You can use this API to
execute your code directly without configuring another event source.

You don’t need to write any code to integrate an event source with your Lambda
function, manage any of the infrastructure that detects events and delivers them
to your function, or manage scaling your Lambda function to match the number
of events that are delivered. You can focus on your application logic and
configure the event sources that cause your logic to run.

http://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html
http://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html
http://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 4

Your Lambda function runs within a (simplified) architecture that looks like the
one shown in Figure 2.

Figure 2: Simplified architecture of a running Lambda function

Once you configure an event source for your function, your code is invoked
when the event occurs. Your code can execute any business logic, reach out to
external web services, integrate with other AWS services, or anything else your
application requires. All of the same capabilities and software design principles
that you’re used to for your language of choice will apply when using Lambda.
Also, because of the inherent decoupling that is enforced in serverless
applications through integrating Lambda functions and event sources, it’s a
natural fit to build microservices using Lambda functions.

With a basic understanding of serverless principles and Lambda, you might be
ready to start writing some code. The following resources will help you get
started with Lambda immediately:

• Hello World tutorial:
http://docs.aws.amazon.com/lambda/latest/dg/get-started-create-
function.html12

• Serverless workshops and walkthroughs for building sample
applications: https://github.com/awslabs/aws-serverless-workshops13

AWS Lambda—Diving Deeper
The remainder of this whitepaper will help you understand the components and
features of Lambda, followed by best practices for various aspects of building
and owning serverless applications using Lambda.

http://docs.aws.amazon.com/lambda/latest/dg/get-started-create-function.html
http://docs.aws.amazon.com/lambda/latest/dg/get-started-create-function.html
https://github.com/awslabs/aws-serverless-workshops

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 5

Let’s begin our deep dive by further expanding and explaining each of the major
components of Lambda that we described in the introduction: function code,
event sources, and function configuration.

Lambda Function Code
At its core, you use Lambda to execute code. This can be code that you’ve
written in any of the languages supported by Lambda (Java, Node.js, Python, or
C# as of this publication), as well as any code or packages you’ve uploaded
alongside the code that you’ve written. You’re free to bring any libraries,
artifacts, or compiled native binaries that can execute on top of the runtime
environment as part of your function code package. If you want, you can even
execute code you’ve written in another programming language (PHP, Go,
SmallTalk, Ruby, etc.), as long as you stage and invoke that code from within
one of the support languages in the AWS Lambda runtime environment (see
this tutorial).14

The Lambda runtime environment is based on an Amazon Linux AMI (see
current environment details here), so you should compile and test the
components you plan to run inside of Lambda within a matching environment.15
To help you perform this type of testing prior to running within Lambda, AWS
provides a set of tools called AWS SAM Local to enable local testing of Lambda
functions.16 We discuss these tools in the Serverless Development Best Practices
section of this whitepaper.

The Function Code Package
The function code package contains all of the assets you want to have available
locally upon execution of your code. A package will, at minimum, include the
code function you want the Lambda service to execute when your function is
invoked. However, it might also contain other assets that your code will
reference upon execution, for example, additional files, classes, and libraries
that your code will import, binaries that you would like to execute, or
configuration files that your code might reference upon invocation. The
maximum size of a function code package is 50 MB compressed and 250MB
extracted at the time of this publication. (For the full list of AWS Lambda limits,
see this documentation.17)

When you create a Lambda function (through the AWS Management Console,
or using the CreateFunction API) you can reference the S3 bucket and object

https://aws.amazon.com/blogs/compute/scripting-languages-for-aws-lambda-running-php-ruby-and-go/
http://docs.aws.amazon.com/lambda/latest/dg/current-supported-versions.html
https://github.com/awslabs/aws-sam-local
http://docs.aws.amazon.com/lambda/latest/dg/limits.html
http://docs.aws.amazon.com/lambda/latest/dg/API_CreateFunction.html

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 6

key where you’ve uploaded the package.18 Alternatively, you can upload the code
package directly when you create the function. Lambda will then store your code
package in an S3 bucket managed by the service. The same options are available
when you publish updated code to existing Lambda functions (through the
UpdateFunctionCode API).19

As events occur, your code package will be downloaded from the S3 bucket,
installed in the Lambda runtime environment, and invoked as needed. This
happens on demand, at the scale required by the number of events triggering
your function, within an environment managed by Lambda.

The Handler
When a Lambda function is invoked, code execution begins at what is called the
handler. The handler is a specific code method (Java, C#) or function (Node.js,
Python) that you’ve created and included in your package. You specify the
handler when creating a Lambda function. Each language supported by Lambda
has its own requirements for how a function handler can be defined and
referenced within the package.

The following links will help you get started with each of the supported
languages.

Language Example Handler Definition

Java20
MyOutput output handlerName(MyEvent event, Context context) {

 ...

}

Node.js21
exports.handlerName = function(event, context, callback) {

 ...

 // callback parameter is optional

}

Python22
def handler_name(event, context):

 ...

 return some_value

http://docs.aws.amazon.com/lambda/latest/dg/API_UpdateFunctionCode.html
http://docs.aws.amazon.com/lambda/latest/dg/java-programming-model.html
http://docs.aws.amazon.com/lambda/latest/dg/programming-model.html
http://docs.aws.amazon.com/lambda/latest/dg/python-programming-model.html

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 7

Language Example Handler Definition

C#23
myOutput HandlerName(MyEvent event, ILambdaContext context) {

 ...

}

Once the handler is successfully invoked inside your Lambda function, the
runtime environment belongs to the code you’ve written. Your Lambda function
is free to execute any logic you see fit, driven by the code you’ve written that
starts in the handler. This means your handler can call other methods and
functions within the files and classes you’ve uploaded. Your code can import
third-party libraries that you’ve uploaded, and install and execute native
binaries that you’ve uploaded (as long as they can run on Amazon Linux). It can
also interact with other AWS services or make API requests to web services that
it depends on, etc.

The Event Object
When your Lambda function is invoked in one of the supported languages, one
of the parameters provided to your handler function is an event object. The
event differs in structure and contents, depending on which event source
created it. The contents of the event parameter include all of the data and
metadata your Lambda function needs to drive its logic. For example, an event
created by API Gateway will contain details related to the HTTPS request that
was made by the API client (for example, path, query string, request body),
whereas an event created by Amazon S3 when a new object is created will
include details about the bucket and the new object.

The Context Object
Your Lambda function is also provided with a context object. The context
object allows your function code to interact with the Lambda execution
environment. The contents and structure of the context object vary, based on
the language runtime your Lambda function is using, but at minimum it will
contain:

• AWS RequestId – Used to track specific invocations of a Lambda
function (important for error reporting or when contacting AWS
Support).

http://docs.aws.amazon.com/lambda/latest/dg/dotnet-programming-model.html

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 8

• Remaining time – The amount of time in milliseconds that remain
before your function timeout occurs (Lambda functions can run a
maximum of 300 seconds as of this publishing, but you can configure a
shorter timeout).

• Logging – Each language runtime provides the ability to stream log
statements to Amazon CloudWatch Logs. The context object contains
information about which CloudWatch Logs stream your log statements
will be sent to. For more information about how logging is handled in
each language runtime, see the following:

o Java24

o Node.js25

o Python26

o C#27

Writing Code for AWS Lambda—Statelessness and Reuse
It’s important to understand the central tenant when writing code for Lambda:
your code cannot make assumptions about state. This is because
Lambda fully manages when a new function container will be created and
invoked for the first time. A container could be getting invoked for the first time
for a number of reasons. For example, the events triggering your Lambda
function are increasing in concurrency beyond the number of containers
previously created for your function, an event is triggering your Lambda
function for the first time in several minutes, etc. While Lambda is responsible
for scaling your function containers up and down to meet actual demand, your
code needs to be able to operate accordingly. Although Lambda won’t interrupt
the processing of a specific invocation that’s already in flight, your code doesn’t
need to account for that level of volatility.

This means that your code cannot make any assumptions that state will be
preserved from one invocation to the next. However, each time a function
container is created and invoked, it remains active and available for subsequent
invocations for at least a few minutes before it is terminated. When subsequent
invocations occur on a container that has already been active and invoked at
least once before, we say that invocation is running on a warm container.
When an invocation occurs for a Lambda function that requires your function
code package to be created and invoked for the first time, we say the invocation
is experiencing a cold start.

http://docs.aws.amazon.com/lambda/latest/dg/java-logging.html
http://docs.aws.amazon.com/lambda/latest/dg/nodejs-prog-model-logging.html
http://docs.aws.amazon.com/lambda/latest/dg/python-logging.html
http://docs.aws.amazon.com/lambda/latest/dg/dotnet-logging.html

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 9

Figure 3: Invocations of warm function containers and cold function containers

Depending on the logic your code is executing, understanding how your code
can take advantage of a warm container can result in faster code execution
inside of Lambda. This, in turn, results in quicker responses and lower cost. For
more details and examples of how to improve your Lambda function
performance by taking advantage of warm containers, see the Best Practices
section later in this whitepaper.

Overall, each language that Lambda supports has its own model for packaging
source code and possibilities for optimizing it. Visit this page to get started with
each of the supported languages.28

Lambda Function Event Sources
Now that you know what goes into the code of a Lambda function, let’s look at
the event sources, or triggers, that invoke your code. While Lambda provides
the Invoke API that enables you to directly invoke your function, you will likely
only use it for testing and operational purposes.29 Instead, you can associate
your Lambda function with event sources occurring within AWS services that
will invoke your function as needed. You don’t have to write, scale, or maintain
any of the software that integrates the event source with your Lambda function.

http://docs.aws.amazon.com/lambda/latest/dg/programming-model-v2.html
http://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 10

Invocation Patterns
There are two models for invoking a Lambda function:

• Push Model – Your Lambda function is invoked every time a particular
event occurs within another AWS service (for example, a new object is
added to an S3 bucket).

• Pull Model – Lambda polls a data source and invokes your function
with any new records that arrive at the data source, batching new
records together in a single function invocation (for example, new
records in an Amazon Kinesis or Amazon DynamoDB stream).

Also, a Lambda function can be executed synchronously or asynchronously. You
choose this using the parameter InvocationType that’s provided when
invoking a Lambda function. This parameter has three possible values:

• RequestResponse – Execute synchronously.

• Event – Execute asynchronously.

• DryRun – Test that the invocation is permitted for the caller, but don’t
execute the function.

Each event source dictates how your function can be invoked. The event source
is also responsible for crafting its own event parameter, as we discussed earlier.

The following tables provide details about how some of the more popular event
sources can integrate with your Lambda functions. You can find the full list of
supported event sources here.30

Push Model Event Sources
Amazon S3

Invocation Model Push

Invocation Type Event

Description S3 event notifications (such as ObjectCreated and
ObjectRemoved) can be configured to invoke a
Lambda function as they are published.

http://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 11

Example Use Cases Create image modifications (thumbnails, different
resolutions, watermarks, etc.) for images that
users upload to an S3 bucket through your
application.

Process raw data uploaded to an S3 bucket and
move transformed data to another S3 bucket as
part of a big data pipeline.

Amazon API Gateway

Invocation Model Push

Invocation Type Event or RequestResponse

Description The API methods you create with API Gateway
can use a Lambda function as their service
backend. If you choose Lambda as the integration
type for an API method, your Lambda function is
invoked synchronously (the response of your
Lambda function serves as the API response).
With this integration type, API Gateway can also
act as a simple proxy to a Lambda function. API
Gateway will perform no processing or
transformation on its own and will pass along all
the contents of the request to Lambda.

If you want an API to invoke your function
asynchronously as an event and return
immediately with an empty response, you can use
API Gateway as an AWS Service Proxy and
integrate with the Lambda Invoke API, providing
the Event InvocationType in the request header.
This is a great option if your API clients don’t need
any information back from the request and you
want the fastest response time possible. (This
option is great for pushing user interactions on a
website or app to a service backend for analysis.)

Example Use Cases Web service backends (web application, mobile
app, microservice architectures, etc.)

Legacy service integration (a Lambda function to
transform a legacy SOAP backend into a new
modern REST API).

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 12

Any other use cases where HTTPS is the
appropriate integration mechanism between
application components.

Amazon SNS

Invocation Model Push

Invocation Type Event

Description Messages that are published to an SNS topic can
be delivered as events to a Lambda function.

Example Use Cases Automated responses to CloudWatch alarms.

Processing of events from other services (AWS or
otherwise) that can natively publish to SNS topics.

AWS CloudFormation

Invocation Model Push

Invocation Type RequestResponse

Description As part of deploying AWS CloudFormation stacks,
you can specify a Lambda function as a custom
resource to execute any custom commands and
provide data back to the ongoing stack creation.

Example Use Cases Extend AWS CloudFormation capabilities to
include AWS service features not yet natively
supported by AWS CloudFormation.

Perform custom validation or reporting at key
stages of the stack creation/update/delete
process.

Amazon CloudWatch Events

Invocation Model Push

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 13

Invocation Type Event

Description Many AWS services publish resource state
changes to CloudWatch Events. Those events
can then be filtered and routed to a Lambda
function for automated responses.

Example Use Cases Event-driven operations automation (for example,
take action each time a new EC2 instance is
launched, notify an appropriate mailing list when
AWS Trusted Advisor reports a new status
change).

Replacement for tasks previously accomplished
with cron (CloudWatch Events supports
scheduled events).

Amazon Alexa

Invocation Model Push

Invocation Type RequestResponse

Description You can write Lambda functions that act as the
service backend for Amazon Alexa Skills. When
an Alexa user interacts with your skill, Alexa’s
Natural Language Understand and Processing
capabilities will deliver their interactions to your
Lambda functions.

Example Use Cases An Alexa skill of your own.

Pull Model Event Sources
Amazon DynamoDB

Invocation Model Pull

Invocation Type Request/Response

Description Lambda will poll a DynamoDB stream multiple
times per second and invoke your Lambda
function with the batch of updates that have been
published to the stream since the last batch. You
can configure the batch size of each invocation.

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 14

Example Use Cases Application-centric workflows that should be
triggered as changes occur in a DynamoDB table
(for example, a new user registered, an order was
placed, a friend request was accepted, etc.).

Replication of a DynamoDB table to another
region (for disaster recovery) or another service
(shipping as logs to an S3 bucket for backup or
analysis).

Amazon Kinesis Streams

Invocation Model Pull

Invocation Type Request/Response

Description Lambda will poll a Kinesis stream, once per
second for each stream shard, and invoke your
Lambda function with the next records in the
shard. You can define the batch size for the
number of records delivered to your function at a
time, as well as the number of Lambda function
containers executing concurrently (number of
stream shards = number of concurrent function
containers).

Example Use Cases Real-time data processing for big data pipelines.

Real-time alerting/monitoring of streaming log
statements or other application events.

Lambda Function Configuration
After you write and package your Lambda function code, on top of choosing
which event sources will trigger your function, you have various configuration
options to set that define how your code is executed within Lambda.

Function Memory
To define the resources allocated to your executing Lambda function, you’re
provided with a single dial to increase/decrease function resources:
memory/RAM. You can allocate 128 MB of RAM up to 1.5 GB of RAM to your
Lambda function. Not only will this dictate the amount of memory available to

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 15

your function code during execution, but the same dial will also influence the
CPU and network resources available to your function.

Selecting the appropriate memory allocation is a very important step when
optimizing the price and performance of any Lambda function. Please review
the best practices later in this whitepaper for more specifics on optimizing
performance.

Versions and Aliases
There are times where you might need to reference or revert your Lambda
function back to code that was previously deployed. Lambda lets you version
your AWS Lambda functions. Each and every Lambda function has a default
version built in: $LATEST. You can address the most recent code that has been
uploaded to your Lambda function through the $LATEST version. You can take
a snapshot of the code that’s currently referred to by $LATEST and create a
numbered version through the PublishVersion API.31 Also, when updating your
function code through the UpdateFunctionCode API, there is an optional
Boolean parameter, publish.32 By setting publish: true in your request,
Lambda will create a new Lambda function version, incremented from the last
published version.

You can invoke each version of your Lambda function independently, at any
time. Each version has its own Amazon Resource Name (ARN), referenced like
this:

arn:aws:lambda:[region]:[account]:function:[fn_name]:[version]

When calling the Invoke API or creating an event source for your Lambda
function, you can also specify a specific version of the Lambda function to be
executed.33 If you don’t provide a version number, or use the ARN that doesn’t
contain the version number, $LATEST is invoked by default.

It’s important to know that a Lambda function container is specific to a
particular version of your function. So, for example, if there are already several
function containers deployed and available in the Lambda runtime environment
for version 5 of the function, version 6 of the same function will not be able to
execute on top of the existing version 5 containers—a different set of containers
will be installed and managed for each function version.

http://docs.aws.amazon.com/lambda/latest/dg/API_PublishVersion.html
http://docs.aws.amazon.com/lambda/latest/dg/API_UpdateFunctionCode.html
http://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 16

Invoking your Lambda functions by their version numbers can be useful during
testing and operational activities. However, we don’t recommend having your
Lambda function be triggered by a specific version number for real application
traffic. Doing so would require you to update all of the triggers and clients
invoking your Lambda function to point at a new function version each time you
wanted to update your code. Lambda aliases should be used here, instead. A
function alias allows you to invoke and point event sources to a specific Lambda
function version.

However, you can update what version that alias refers to at any time. For
example, your event sources and clients that are invoking version number 5
through the alias live may cut over to version number 6 of your function as
soon as you update the live alias to instead point at version number 6. Each
alias can be referred to within the ARN, similar to when referring to a function
version number:

arn:aws:lambda:[region]:[account]:function:[fn_name]:[alias]

Note: An alias is simply a pointer to a specific version number. This means that
if you have multiple different aliases pointed to the same Lambda function
version at once, requests to each alias are executed on top of the same set of
installed function containers. This is important to understand so that you don’t
mistakenly point multiple aliases at the same function version number, if
requests for each alias are intended to be processed separately.

Here are some example suggestions for Lambda aliases and how you might use
them:

• live/prod/active – This could represent the Lambda function version
that your production triggers or that clients are integrating with.

• blue/green – Enable the blue/green deployment pattern through use
of aliases.

• debug – If you’ve created a testing stack to debug your applications, it
can integrate with an alias like this when you need to perform a deeper
analysis.

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 17

Creating a good, documented strategy for your use of function aliases enables
you to have sophisticated serverless deployment and operations practices.

IAM Role
AWS Identity and Access Management (IAM) provides the capability to create
IAM policies that define permissions for interacting with AWS services and
APIs.34 Policies can be associated with IAM roles. Any access key ID and secret
access key generated for a particular role is authorized to perform the actions
defined in the policies attached to that role. For more information about IAM
best practices, see this documentation.35

In the context of Lambda, you assign an IAM role (called an execution role) to
each of your Lambda functions. The IAM policies attached to that role define
what AWS service APIs your function code is authorized to interact with. There
are two benefits:

• Your source code isn’t required to perform any AWS credential
management or rotation to interact with the AWS APIs. Simply using the
AWS SDKs and the default credential provider results in your Lambda
function automatically using temporary credentials associated with the
execution role assigned to the function.

• Your source code is decoupled from its own security posture. If a
developer attempts to change your Lambda function code to integrate
with a service that the function doesn’t have access to, that integration
will fail due to the IAM role assigned to your function. (Unless they have
used IAM credentials that are separate from the execution role, you
should use static code analysis tools to ensure that no AWS credentials
are present in your source code).

It’s important to assign each of your Lambda functions a specific, separate, and
least-privilege IAM role. This strategy ensures that each Lambda function can
evolve independently without increasing the authorization scope of any other
Lambda functions.

Lambda Function Permissions
You can define which push model event sources are allowed to invoke a Lambda
function through a concept called permissions. With permissions, you declare
a function policy that lists the AWS Resource Names (ARNs) that are allowed
to invoke a function.

http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 18

For pull model event sources (for example, Kinesis streams and DynamoDB
streams), you need to ensure that the appropriate actions are permitted by the
IAM execution role assigned to your Lambda function. AWS provides a set of
managed IAM roles associated with each of the pull-based event sources if you
don’t want to manage the permissions required. However, to ensure least
privilege IAM policies, you should create your own IAM roles with resource-
specific policies to permit access to just the intended event source.

Network Configuration
Executing your Lambda function occurs through the use of the Invoke API that
is part of the AWS Lambda service APIs; so, there is no direct inbound network
access to your function to manage. However, your function code might need to
integrate with external dependencies (internal or publically hosted web services,
AWS services, databases, etc.). A Lambda function has two broad options for
outbound network connectivity:

• Default – Your Lambda function communicates from inside a virtual
private cloud (VPC) that is managed by Lambda. It can connect to the
internet, but not to any privately deployed resources running within
your own VPCs.

• VPC – Your Lambda function communicates through an Elastic
Network Interface (ENI) that is provisioned within the VPC and
subnets you choose within your own account. These ENIs can be
assigned security groups, and traffic will route based on the route tables
of the subnets those ENIs are placed within—just the same as if an EC2
instance were placed in the same subnet.

If your Lambda function doesn’t require connectivity to any privately deployed
resources, we recommend you select the default networking option. Choosing
the VPC option will require you to manage:

• Selecting appropriate subnets to ensure multiple Availability Zones are
being used for the purposes of high availability.

• Allocating the appropriate number of IP addresses to each subnet to
manage capacity.

• Implementing a VPC network design that will permit your Lambda
functions to have the connectivity and security required.

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 19

• An increase in Lambda cold start times if your Lambda function
invocation patterns require a new ENI to be created just in time. (ENI
creation can take many seconds today.)

However, if your use case requires private connectivity, use the VPC option with
Lambda. For deeper guidance if you plan to deploy your Lambda functions
within your own VPC, see this documentation.36

Environment Variables
Software Development Life Cycle (SDLC) best practice dictates that developers
separate their code and their config. You can achieve this by using environment
variables with Lambda. Environment variables for Lambda functions enable you
to dynamically pass data to your function code and libraries without making
changes to your code. Environment variables are key-value pairs that you create
and modify as part of your function configuration. By default, these variables
are encrypted at rest. For any sensitive information that will be stored as a
Lambda function environment variable, we recommend you encrypt those
values using the AWS Key Management Service (AWS KMS) prior to function
creation, storing the encrypted cyphertext as the variable value. Then have your
Lambda function decrypt that variable in memory at execution time.

Here are some examples of how you might decide to use environment variables:

• Log settings (FATAL, ERROR, INFO, DEBUG, etc.)

• Dependency and/or database connection strings and credentials

• Feature flags and toggles

Each version of your Lambda function can have its own environment variable
values. However, once the values are established for a numbered Lambda
function version, they cannot be changed. To make changes to your Lambda
function environment variables, you can change them to the $LATEST version
and then publish a new version that contains the new environment variable
values. This enables you to always keep track of which environment variable
values are associated with a previous version of your function. This is often
important during a rollback procedure or when triaging the past state of an
application.

http://docs.aws.amazon.com/lambda/latest/dg/vpc.html

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 20

Dead Letter Queues
Even in the serverless world, exceptions can still occur. (For example, perhaps
you’ve uploaded new function code that doesn’t allow the Lambda event to be
parsed successfully, or there is an operational event within AWS that is
preventing the function from being invoked.) For asynchronous event sources
(the event InvocationType), AWS owns the client software that is responsible
for invoking your function. AWS does not have the ability to synchronously
notify you if the invocations are successful or not as invocations occur. If an
exception occurs when trying to invoke your function in these models, the
invocation will be attempted two more times (with back-off between the retries).
After the third attempt, the event is either discarded or placed onto a dead
letter queue, if you configured one for the function.

A dead letter queue is either an SNS topic or SQS queue that you have
designated as the destination for all failed invocation events. If a failure event
occurs, the use of a dead letter queue allows you to retain just the messages that
failed to be processed during the event. Once your function is able to be invoked
again, you can target those failed events in the dead letter queue for
reprocessing. The mechanisms for reprocessing/retrying the function
invocation attempts placed on to your dead letter queue is up to you. For more
information about dead letter queues, see this tutorial.37 You should use dead
letter queues if it’s important to your application that all invocations of your
Lambda function complete eventually, even if execution is delayed.

Timeout
You can designate the maximum amount of time a single function execution is
allowed to complete before a timeout is returned. The maximum timeout for a
Lambda function is 300 seconds at the time of this publication, which means a
single invocation of a Lambda function cannot execute longer than 300 seconds.
You should not always set the timeout for a Lambda function to the maximum.
There are many cases where an application should fail fast. Because your
Lambda function is billed based on execution time in 100-ms increments,
avoiding lengthy timeouts for functions can prevent you from being billed while
a function is simply waiting to timeout (perhaps an external dependency is
unavailable, you’ve accidentally programmed an infinite loop, or another similar
scenario).

Also, once execution completes or a timeout occurs for your Lambda function
and a response is returned, all execution ceases. This includes any background

https://aws.amazon.com/blogs/compute/robust-serverless-application-design-with-aws-lambda-dlq/

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 21

processes, subprocesses, or asynchronous processes that your Lambda function
might have spawned during execution. So you should not rely on background or
asynchronous processes for critical activities. Your code should ensure those
activities are completed prior to timeout or returning a response from your
function.

Serverless Best Practices
Now that we’ve covered the components of a Lambda-based serverless
application, let’s cover some recommended best practices. There are many
SDLC and server-based architecture best practices that are also true for
serverless architectures: eliminate single points of failure, test changes prior to
deployment, encrypt sensitive data, etc.

However, achieving best practices for serverless architectures can be a different
task because of how different the operating model is. You don’t have access to,
or concerns about, an operating system or any lower-level components in the
infrastructure. Because of this, your focus is solely on your own application
code/architecture, the development processes you follow, and the features of
the AWS services your application leverages that enable you to follow best
practices.

First, we review a set of best practices for designing your serverless architecture
according to the AWS Well-Architected Framework. Then, we cover some best
practices and recommendations for your development process when building
serverless applications.

Serverless Architecture Best Practices
The AWS Well-Architected Framework includes strategies to help you compare
your workload against our best practices, and obtain guidance to produce stable
and efficient systems so you can focus on functional requirements.38 It is based
on five pillars: security, reliability, performance efficiency, cost optimization,
and operational excellence. Many of the guidelines in the framework apply to
serverless applications. However, there are specific implementation steps or
patterns that are unique to serverless architectures. In the following sections,
we cover a set of recommendations that are serverless-specific for each of the
Well-Architected pillars.

http://d0.awsstatic.com/whitepapers/architecture/AWS_Well-Architected_Framework.pdf

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 22

Security Best Practices
Designing and implementing security into your applications should always be
priority number one—this doesn’t change with a serverless architecture. The
major difference for securing a serverless application compared to a server-
hosted application is obvious—there is no server for you to secure. However,
you still need to think about your application’s security. There is still a shared
responsibility model for serverless security.

With Lambda and serverless architectures, rather than implementing
application security through things like antivirus/malware software, file
integrity monitoring, intrusion detection/prevention systems, firewalls, etc., you
ensure security best practices through writing secure application code, tight
access control over source code changes, and following AWS security best
practices for each of the services that your Lambda functions integrate with.

The following is a brief list of serverless security best practices that should apply
to many serverless use cases, although your own specific security and
compliance requirements should be well understood and might include more
than we describe here.

• One IAM Role per Function

Each and every Lambda function within your AWS account should have
a 1:1 relationship with an IAM role. Even if multiple functions begin with
exactly the same policy, always decouple your IAM roles so that you can
ensure least privilege policies for the future of your function.

For example, if you shared the IAM role of a Lambda function that
needed access to an AWS KMS key across multiple Lambda functions,
then all of those functions would now have access to the same
encryption key.

• Temporary AWS Credentials

You should not have any long-lived AWS credentials included within
your Lambda function code or configuration. (This is a great use for
static code analysis tools to ensure it never occurs in your code base!)
For most cases, the IAM execution role is all that’s required to integrate
with other AWS services. Simply create AWS service clients within your
code through the AWS SDK without providing any credentials. The SDK
automatically manages the retrieval and rotation of the temporary

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 23

credentials generated for your role. The following is an example using
Java.

AmazonDynamoDB client = AmazonDynamoDBClientBuilder.defaultClient();

Table myTable = new Table(client, "MyTable");

This code snippet is all that’s required for the AWS SDK for Java to
create an object for interacting with a DynamoDB table that
automatically sign its requests to the DynamoDB APIs, using the
temporary IAM credentials assigned to your function.39

However, there might be cases where the execution role is not sufficient
for the type of access your function requires. This can be the case for
some cross-account integrations your Lambda function might perform,
or if you have user-specific access control policies through combining
Amazon Cognito40 identity roles and DynamoDB fine-grained access
control.41 For cross-account use cases, you should grant your execution
role should be granted access to the AssumeRole API within the AWS
Security Token Service and integrated to retrieve temporary access
credentials.42

For user-specific access control policies, your function should be
provided with the user identity in question and then integrated with the
Amazon Cognito API GetCredentialsForIdentity.43 In this case, it’s
imperative that you ensure your code appropriately manages these
credentials so that you are leveraging the correct credentials for each
user associated with that invocation of your Lambda function. It’s
common for an application to encrypt and store these per-user
credentials in a place like DynamoDB or Amazon ElastiCache as part of
user session data, so that they can be retrieved with reduced latency and
more scalability than regenerating them for subsequent requests for a
returning user.44

• Persisting Secrets

There are cases where you may have long-lived secrets (for example,
database credentials, dependency service access keys, encryption keys,
etc.) that your Lambda function needs to use. We recommend a few
options for the lifecycle of secrets management in your application:

o Lambda Environment Variables with Encryption Helpers45

https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/cognito/
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/specifying-conditions.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/specifying-conditions.html
http://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
http://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
http://docs.aws.amazon.com/cognitoidentity/latest/APIReference/API_GetCredentialsForIdentity.html
https://aws.amazon.com/elasticache/
http://docs.aws.amazon.com/lambda/latest/dg/env_variables.html#env_encrypt

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 24

Advantages – Provided directly to your function runtime
environment, minimizing the latency and code required to retrieve
the secret.

Disadvantages – Environment variables are coupled to a function
version. Updating an environment variable requires a new function
version (more rigid, but does provide stable version history as well).

o Amazon EC2 Systems Manager Parameter Store46

Advantages – Fully decoupled from your Lambda functions to
provide maximum flexibility for how secrets and functions relate to
each other.

Disadvantages – A request to Parameter Store is required to
retrieve a parameter/secret. While not substantial, this does add
latency over environment variables as well as an additional service
dependency, and requires writing slightly more code.

• Using Secrets

Secrets should always only exist in memory and never be logged or
written to disk. Write code that manages the rotation of secrets in the
event a secret needs to be revoked while your application remains
running.

• API Authorization

Using API Gateway as the event source for your Lambda function is
unique from the other AWS service event source options in that you have
ownership of authentication and authorization of your API clients. API
Gateway can perform much of the heavy lifting by providing things like
native AWS SigV4 authentication,47 generated client SDKs,48 and custom
authorizers.49 However, you’re still responsible for ensuring that the
security posture of your APIs meets the bar you’ve set. For more
information about API security best practices, see this documentation.50

• VPC Security

If your Lambda function requires access to resources deployed inside a
VPC, you should apply network security best practices through use of
least privilege security groups, Lambda function-specific subnets,
network ACLs, and route tables that allow traffic coming only from your
Lambda functions to reach intended destinations.

http://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-paramstore.html
http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-generate-sdk.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/use-custom-authorizer.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/use-custom-authorizer.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-control-access-to-api.html

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 25

Keep in mind that these practices and policies impact the way that your
Lambda functions connect to their dependencies. Invoking a Lambda
function still occurs through event sources and the Invoke API (neither
are affected by your VPC configuration).

• Deployment Access Control

A call to the UpdateFunctionCode API is analogous to a code
deployment. Moving an alias through the UpdateAlias API to that newly
published version is analogous to a code release. Treat access to the
Lambda APIs that enable function code/aliases with extreme sensitivity.
As such, you should eliminate direct user access to these APIs for any
functions (production functions at a minimum) to remove the possibility
of human error. Making code changes to a Lambda function should be
achieved through automation. With that in mind, the entry point for a
deployment to Lambda becomes the place where your continuous
integration/continuous delivery (CI/CD) pipeline is initiated. This may
be a release branch in a repository, an S3 bucket where a new code
package is uploaded that triggers an AWS CodePipeline pipeline, or
somewhere else that’s specific to your organization and processes.51
Wherever it is, it becomes a new place where you should enforce
stringent access control mechanisms that fit your team structure and
roles.

Reliability Best Practices
Serverless applications can be built to support mission-critical use cases. Just as
with any mission-critical application, it’s important that you architect with the
mindset that Werner Vogels, CTO, Amazon.com, advocates for, “Everything fails
all the time.” For serverless applications, this could mean introducing logic bugs
into your code, failing application dependencies, and other similar application-
level issues that you should try and prevent and account for using existing best
practices that will still apply to your serverless applications. For infrastructure-
level service events, where you are abstracted away from the event for serverless
applications, you should understand how you have architected your application
to achieve high availability and fault tolerance.

High Availability
High-availability is important for production applications. The availability
posture of your Lambda function depends on the number of Availability Zones it
can be executed in. If your function uses the default network environment, it is

https://aws.amazon.com/codepipeline/

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 26

automatically available to execute within all of the Availability Zones in that
AWS Region. Nothing else is required to configure high availability for your
function in the default network environment. If your function is deployed within
your own VPC, the subnets (and their respective Availability Zones) define if
your function remains available in the event of an Availability Zone outage.
Therefore, it’s important that your VPC design includes subnets in multiple
Availability Zones. In the event that an Availability Zone outage occurs, it’s
important that your remaining subnets continue to have adequate IP addresses
to support the number of concurrent functions required. For information on
how to calculate the number of IP addresses your functions require, see this
documentation.52

Fault Tolerance
If the application availability you need requires you to take advantage of
multiple AWS Regions, you must take this into account up front in your design.
It’s not a complex exercise to replicate your Lambda function code packages to
multiple AWS Regions. What can be complex, like most multi-region
application designs, is coordinating a failover decision across all tiers of your
application stack. This means you need to understand and orchestrate the shift
to another AWS Region—not just for your Lambda functions but also for your
event sources (and dependencies further upstream of your event sources) and
persistence layers. In the end, a multi-region architecture is very application-
specific. The most important thing to do to make a multi-region design feasible
is to account for it in your design up front.

Recovery
Consider how your serverless application should behave in the event that your
functions cannot be executed. For use cases where API Gateway is used as the
event source, this can be as simple as gracefully handling error messages and
providing a viable, if degraded, user experience until your functions can be
successfully executed again.

For asynchronous use cases, it can be very important to still ensure that no
function invocations are lost during the outage period. To ensure that all
received events are processed after your function has recovered, you should take
advantage of dead letter queues and implement how to process events placed on
that queue after recovery occurs.

http://docs.aws.amazon.com/lambda/latest/dg/vpc.html#vpc-setup-guidelines
http://docs.aws.amazon.com/lambda/latest/dg/vpc.html#vpc-setup-guidelines

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 27

Performance Efficiency Best Practices
Before we dive into performance best practices, keep in mind that if your use
case can be achieved asynchronously, you might not need to be concerned with
the performance of your function (other than to optimize costs). You can
leverage one of the event sources that will use the event InvocationType or
use the pull-based invocation model. Those methods alone might allow your
application logic to proceed while Lambda continues to process the event
separately. If Lambda function execution time is something you want to
optimize, the execution duration of your Lambda function will be primarily
impacted by three things (in order of simplest to optimize): the resources you
allocate in the function configuration, the language runtime you choose, and the
code you write.

Choosing the Optimal Memory Size
Lambda provides a single dial to turn up and down the amount of compute
resources available to your function—the amount of RAM allocated to your
function. The amount of allocated RAM also impacts the amount of CPU time
and network bandwidth your function receives. Simply choosing the smallest
resource amount that runs your function adequately fast is an anti-pattern.
Because Lambda is billed in 100-ms increments, this strategy might not only
add latency to your application, it might even be more expensive overall if the
added latency outweighs the resource cost savings.

We recommend that you test your Lambda function at each of the available
resource levels to determine what the optimal level of price/performance is for
your application. You’ll discover that the performance of your function should
improve logarithmically as resource levels are increased. The logic you’re
executing will define the lower bound for function execution time. There will
also be a resource threshold where any additional RAM/CPU/bandwidth
available to your function no longer provides any substantial performance gain.
However, pricing increases linearly as the resource levels increase in Lambda.
Your tests should find where the logarithmic function bends to choose the
optimal configuration for your function.

The following graph shows how the ideal memory allocation to an example
function can allow for both better cost and lower latency. Here, the additional
compute cost per 100 ms for using 512 MB over the lower memory options is
outweighed by the amount of latency reduced in the function by allocating more
resources. But after 512 MB, the performance gains are diminished for this

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 28

particular function’s logic, so the additional cost per 100 ms now drives the total
cost higher. This leaves 512 MB as the optimal choice for minimizing total cost.

Figure 4: Choosing the optimal Lambda function memory size

The memory usage for your function is determined per invocation and can be
viewed in CloudWatch Logs.53 On each invocation a REPORT: entry is made, as
shown below.

REPORT RequestId: 3604209a-e9a3-11e6-939a-754dd98c7be3 Duration:
12.34 ms Billed Duration: 100 ms Memory Size: 128 MB Max Memory
Used: 18 MB

By analyzing the Max Memory Used: field, you can determine if your function
needs more memory or if you over-provisioned your function's memory size.

Language Runtime Performance
Choosing a language runtime performance is obviously dependent on your level
of comfort and skills with each of the supported runtimes. But if performance is
the driving consideration for your application, the performance characteristics
of each language are what you might expect on Lambda as you would in another
runtime environment: the compiled languages (Java and .NET) incur the largest
initial startup cost for a container’s first invocation, but show the best
performance for subsequent invocations. The interpreted languages (Node.js
and Python) have very fast initial invocation times compared to the compiled
languages, but can’t reach the same level of maximum performance as the
compiled languages do.

http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatchLogs.html

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 29

If your application use case is both very latency-sensitive and susceptible to
incurring the initial invocation cost frequently (very spiky traffic or very
infrequent use), we recommend one of the interpreted languages.

If your application does not experience large peaks or valleys within its traffic
patterns, or does not have user experiences blocked on Lambda function
response times, we recommend you choose the language you’re already most
comfortable with.

Optimizing Your Code
Much of the performance of your Lambda function is dictated by what logic you
need your Lambda function to execute and what its dependencies are. We won’t
cover what all those optimizations could be, because they vary from application
to application. But there are some general best practices to optimize your code
for Lambda. These are related to taking advantage of container reuse (as
describes in the previous overview) and minimizing the initial cost of a cold
start.

Here are a few examples of how you can improve the performance of your
function code when a warm container is invoked:

• After initial execution, store and reference any externalized
configuration or dependencies that your code retrieves locally.

• Limit the reinitialization of variables/objects on every invocation (use
global/static variables, singletons, etc.).

• Keep alive and reuse connections (HTTP, database, etc.) that were
established during a previous invocation.

Finally, you should do the following to limit the amount of time that a cold start
takes for your Lambda function:

1. Always use the default network environment unless connectivity to a
resource within a VPC via private IP is required. This is because there are
additional cold start scenarios related to the VPC configuration of a
Lambda function (related to creating ENIs within your VPC).

2. Choose an interpreted language over a compiled language.

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 30

3. Trim your function code package to only its runtime necessities. This
reduces the amount of time that it takes for your code package to be
downloaded from Amazon S3 ahead of invocation.

Understanding Your Application Performance
To get visibility into the various components of your application architecture,
which could include one or more Lambda functions, we recommend that you
use AWS X-Ray.54 X-Ray lets you trace the full lifecycle of an application request
through each of its component parts, showing the latency and other metrics of
each component separately, as shown in the following figure.

Figure 5: A service map visualized by AWS X-Ray

To learn more about X-Ray, see this documentation.55

Operational Excellence Best Practices
Creating a serverless application removes many operational burdens that a
traditional application brings with it. This doesn’t mean you should reduce your
focus on operational excellence. It means that you can narrow your operational
focus to a smaller number of responsibilities and hopefully achieve a higher
level of operational excellence.

Logging
Each language runtime for Lambda provides a mechanism for your function to
deliver logged statements to CloudWatch Logs. Making adequate use of logs
goes without saying and isn’t new to Lambda and serverless architectures. Even
though it’s not considered best practice today, many operational teams depend

https://aws.amazon.com/xray/
http://docs.aws.amazon.com/lambda/latest/dg/lambda-x-ray.html

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 31

on viewing logs as they are generated on top of the server an application is
deployed on. That simply isn’t possible with Lambda because there is no server.
You also don’t have the ability to “step through” the code of a live running
Lambda function today (although you can do this with AWS SAM Local prior to
deployment).56 For deployed functions, you depend heavily on the logs you
create to inform an investigation of function behavior. Therefore, it’s especially
important that the logs you do create find the right balance of verbosity to help
track/triage issues as they occur without demanding too much additional
compute time to create them.

We recommend that you make use of Lambda environment variables to create a
LogLevel variable that your function can refer to so that it can determine which
log statements to create during runtime. Appropriate use of log levels can
ensure that you have the ability to selectively incur the additional compute cost
and storage cost only during an operational triage.

Metrics and Monitoring
Lambda, just like other AWS services, provides a number of CloudWatch
metrics out of the box. These include metrics related to the number of
invocations a function has received, the execution duration of a function, and
others. It’s best practice to create alarm thresholds (high and low) for each of
your Lambda functions on all of the provided metrics through CloudWatch. A
major change in how your function is invoked or how long it takes to execute
could be your first indication of a problem in your architecture.

For any additional metrics that your application needs to gather (for example,
application error codes, dependency-specific latency, etc.) you have two options
to get those custom metrics stored in CloudWatch or your monitoring solution
of choice:

• Create a custom metric and integrate directly with the API required from
your Lambda function as it’s executing. This has the fewest
dependencies and will record the metric as fast as possible. However, it
does require you to spend Lambda execution time and resources
integrating with another service dependency. If you follow this path,
ensure that your code for capturing metrics is modularized and reusable
across your Lambda functions instead of tightly coupled to a specific
Lambda function.

https://github.com/awslabs/aws-sam-local

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 32

• Capture the metric within your Lambda function code and log it using
the provided logging mechanisms in Lambda. Then, create a
CloudWatch Logs metric filter on the function streams to extract the
metric and make it available in CloudWatch. Alternatively, create
another Lambda function as a subscription filter on the CloudWatch
Logs stream to push filtered log statements to another metrics solution.
This path introduces more complexity and is not as near real-time as the
previous solution for capturing metrics. However, it allows your function
to more quickly create metrics through logging rather than making an
external service request.

Deployment
Performing a deployment in Lambda is as simple as uploading a new function code
package, publishing a new version, and updating your aliases. However, these steps
should only be pieces of your deployment process with Lambda. Each deployment
process is application-specific. To design a deployment process that avoids negatively
disrupting your users or application behavior, you need to understand the relationship
between each Lambda function and its event sources and dependencies. Things to
consider are:

• Parallel version invocations – Updating an alias to point to a new
version of a Lambda function happens asynchronously on the service
side. There will be a short period of time that existing function
containers containing the previous source code package will continue to
be invoked alongside the new function version the alias has been
updated to. It’s important that your application continues to operate as
expected during this process. An artifact of this might be that any stack
dependencies being decommissioned after a deployment (for example,
database tables, a message queue, etc.) not be decommissioned until
after you’ve observed all invocations targeting the new function version.

• Deployment schedule – Performing a Lambda function deployment
during a peak traffic time could result in more cold start times than
desired. You should always perform your function deployments during a
low traffic period to minimize the immediate impact of the new/cold
function containers being provisioned in the Lambda environment.

• Rollback – Lambda provides details about Lambda function versions
(for example, created time, incrementing numbers, etc.). However, it
doesn’t logically track how your application lifecycle has been using
those versions. If you need to roll back your Lambda function code, it’s

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 33

important for your processes to roll back to the function version that was
previously deployed.

Load Testing
Load test your Lambda function to determine an optimum timeout value. It’s
important to analyze how long your function runs so that you can better
determine any problems with a dependency service that might increase the
concurrency of the function beyond what you expect. This is especially
important when your Lambda function makes network calls to resources that
may not handle Lambda’s scaling.

Triage and Debugging
Both logging to enable investigations and using X-Ray to profile applications are
useful to operational triages. Additionally, consider creating Lambda function
aliases that represent operational activities such as integration testing,
performance testing, debugging, etc. It’s common for teams to build out test
suites or segmented application stacks that serve an operational purpose. You
should build these operational artifacts to also integrate with Lambda functions
via aliases. However, keep in mind that aliases don’t enforce a wholly separate
Lambda function container. So an alias like PerfTest that points at function
version number N, will use the same function containers as all other aliases
pointing at version N. You should define appropriate versioning and alias
updating processes to ensure separate containers are invoked where required.

Cost Optimization Best Practices
Because Lambda charges are based on function execution time and the
resources allocated, optimizing your costs is focused on optimizing those two
dimensions.

Right-Sizing
As covered in Performance Efficiency, it’s an anti-pattern to assume that the
smallest resource size available to your function will provide the lowest total
cost. If your function’s resource size is too small, you could pay more due to a
longer execution time than if more resources were available that allowed your
function to complete more quickly.

See the section Choosing the Optimal Memory Size for more details.

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 34

Distributed and Asynchronous Architectures
You don’t need to implement all use cases through a series of
blocking/synchronous API requests and responses. If you are able to design
your application to be asynchronous, you might find that each decoupled
component of your architecture takes less compute time to conduct its work
than tightly coupled components that spend CPU cycles awaiting responses to
synchronous requests. Many of the Lambda event sources fit well with
distributed systems and can be used to integrate your modular and decoupled
functions in a more cost-effective manner.

Batch Size
Some Lambda event sources allow you to define the batch size for the number of
records that are delivered on each function invocation (for example, Kinesis and
DynamoDB). You should test to find the optimal number of records for each
batch size so that the polling frequency of each event source is tuned to how
quickly your function can complete its task.

Event Source Selection
The variety of event sources available to integrate with Lambda means that you
often have a variety of solution options available to meet your requirements.
Depending on your use case and requirements (request scale, volume of data,
latency required, etc.), there might be a non-trivial difference in the total cost of
your architecture based on which AWS services you choose as the components
that surround your Lambda function.

Serverless Development Best Practices
Creating applications with Lambda can enable a development pace that you
haven’t experienced before. The amount of code you need to write for a working
and robust serverless application will likely be a small percentage of the code
you would need to write for a server-based model. But with a new application
delivery model that serverless architectures enable, there are new dimensions
and constructs that your development processes must make decisions about.
Things like organizing your code base with Lambda functions in mind, moving
code changes from a developer laptop into a production serverless environment,
and ensuring code quality through testing even though you can’t simulate the
Lambda runtime environment or your event sources outside of AWS. The
following are some development-centric best practices to help you work through
these aspects of owning a serverless application.

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 35

Infrastructure as Code – the AWS Serverless Application Model
(AWS SAM)
Representing your infrastructure as code brings many benefits in terms of the
auditability, automatability, and repeatability of managing the creation and
modification of infrastructure. Even though you don’t need to manage any
infrastructure when building a serverless application, many components play a
role in the architecture: IAM roles, Lambda functions and their configurations,
their event sources, and other dependencies. Representing all of these things in
AWS CloudFormation natively would require a large amount of JSON or YAML.
Much of it would be almost identical from one serverless application to the next.

The AWS Serverless Application Model (AWS SAM) enables you to have a
simpler experience when building serverless applications and get the benefits of
infrastructure as code. AWS SAM is an open specification abstraction layer on
top of AWS CloudFormation.57 It provides a set of command line utilities that
enable you to define a full serverless application stack with only a handful of
lines of JSON or YAML, package your Lambda function code together with that
infrastructure definition, and then deploy them together to AWS. We
recommend using AWS SAM combined with AWS CloudFormation to define
and make changes to your serverless application environment.

There is a distinction, however, between changes that occur at the
infrastructure/environment level and application code changes occurring within
existing Lambda functions. AWS CloudFormation and AWS SAM aren’t the only
tools required to build a deployment pipeline for your Lambda function code
changes. See the CI/CD section of this whitepaper for more recommendations
about managing code changes for your Lambda functions.

Local Testing – AWS SAM Local
Along with AWS SAM, AWS SAM Local offers additional command line tools
that you can add to AWS SAM to test your serverless functions and applications
locally before deploying them to AWS.58 AWS SAM Local uses Docker to enable
you to quickly test your developed Lambda functions using popular event
sources (for example, Amazon S3, DynamoDB, etc.). You can locally test an API
you define in your SAM template before it is created in API Gateway. You can
also validate the AWS SAM template that you created. By enabling these
capabilities to run against Lambda functions still residing within your developer
workstation, you can do things like view logs locally, step through your code in a

https://github.com/awslabs/serverless-application-model
https://github.com/awslabs/aws-sam-local

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 36

debugger, and quickly iterate changes without having to deploy a new code
package to AWS.

Coding and Code Management Best Practices
When developing code for Lambda functions, there are some specific
recommendations around how you should both write and organize code so that
managing many Lambda functions doesn’t become a complex task.

Coding Best Practices
Depending on the Lambda runtime language you build with, continue to follow
the best practices already established for that language. While the environment
that surrounds how your code is invoked has changed with Lambda, the
language runtime environment is the same as anywhere else. Coding standards
and best practices still apply. The following recommendations are specific to
writing code for Lambda, outside of those general best practices for your
language of choice.

Business Logic outside the Handler
Your Lambda function starts execution at the handler function you define
within your code package. Within your handler function you should receive the
parameters provided by Lambda, pass those parameters to another function to
parse into new variables/objects that are contextualized to your application, and
then reach out to your business logic that sits outside the handler function and
file. This enables you to create a code package that is as decoupled from the
Lambda runtime environment as possible. This will greatly benefit your ability
to test your code within the context of objects and functions you’ve created and
reuse the business logic you’ve written in other environments outside of
Lambda.

The following example (written in Java) shows poor practices where the core
business logic of an application is tightly coupled to Lambda. In this example,
the business logic is created within the handler method and depends directly on
Lambda event source objects.

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 37

Warm Containers—Caching/Keep-Alive/Reuse
As mentioned earlier, you should write code that takes advantage of a warm
function container. This means scoping your variables in a way that they and
their contents can be reused on subsequent invocations where possible. This is
especially impactful for things like bootstrapping configuration, keeping
external dependency connections open, or one-time initialization of large
objects that can persist from one invocation to the next.

Control Dependencies
The Lambda execution environment contains many libraries such as the AWS
SDK for the Node.js and Python runtimes. (For a full list, see the Lambda
Execution Environment and Available Libraries.59) To enable the latest set of
features and security updates, Lambda periodically updates these libraries.
These updates can introduce subtle changes to the behavior of your Lambda
function. To have full control of the dependencies your function uses, we
recommend packaging all your dependencies with your deployment package.

Trim Dependencies
Lambda function code packages are permitted to be at most 50 MB when
compressed and 250 MB when extracted in the runtime environment. If you are
including large dependency artifacts with your function code, you may need to

http://docs.aws.amazon.com/lambda/latest/dg/current-supported-versions.html
http://docs.aws.amazon.com/lambda/latest/dg/current-supported-versions.html

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 38

trim the dependencies included to just the runtime essentials. This also allows
your Lambda function code to be downloaded and installed in the runtime
environment more quickly for cold starts.

Fail Fast
Configure reasonably short timeouts for any external dependencies, as well as a
reasonably short overall Lambda function timeout. Don’t allow your function to
spin helplessly while waiting for a dependency to respond. Because Lambda is
billed based on the duration of your function execution, you don’t want to incur
higher charges than necessary when your function dependencies are
unresponsive.

Handling Exceptions
You might decide to throw and handle exceptions differently depending on your
use case for Lambda. If you’re placing an API Gateway API in front of a Lambda
function, you may decide to throw an exception back to API Gateway where it
might be transformed, based on its contents, into the appropriate HTTP status
code and message for the error that occurred. If you’re building an
asynchronous data processing system, you might decide that some exceptions
within your code base should equate to the invocation moving to the dead letter
queue for reprocessing, while other errors can just be logged and not placed on
the dead letter queue. You should evaluate what your decide failure behaviors
are and ensure that you are creating and throwing the correct types of
exceptions within your code to achieve that behavior. To learn more about
handling exceptions, see the following for details about how exceptions are
defined for each language runtime environment:

• Java60

• Node.js61

• Python62

• C#63

Code Management Best Practices
Now that the code you’ve written for your Lambda functions follows best
practices, how should you manage that code? With the development speed that
Lambda enables, you might be able to complete code changes at a pace that is
unfamiliar for your typical processes. And the reduced amount of code that
serverless architectures require means that your Lambda function code

http://docs.aws.amazon.com/lambda/latest/dg/java-exceptions.html
http://docs.aws.amazon.com/lambda/latest/dg/nodejs-prog-mode-exceptions.html
http://docs.aws.amazon.com/lambda/latest/dg/python-exceptions.html
http://docs.aws.amazon.com/lambda/latest/dg/dotnet-exceptions.html

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 39

represents a large portion of what makes your entire application stack function.
So having good source code management of your Lambda function code will
help ensure secure, efficient, and smooth change management processes.

Code Repository Organization
We recommend that you organize your Lambda function source code to be very
fine-grained within your source code management solution of choice. This
usually means having a 1:1 relationship between Lambda functions and code
repositories or repository projects. (The lexicon differs from one source code
management tool to another.) However, if you are following a strategy of
creating separate Lambda functions for different lifecycle stages of the same
logical function (that is, you have two Lambda functions, one called
MyLambdaFunction-DEV and another called MyLambdaFunction-PROD), it
makes sense to have those separate Lambda functions share a code base
(perhaps deploying from separate release branches).

The main purpose of organizing your code this way is to help ensure that all of
the code that contributes to the code package of a particular Lambda function is
independently versioned and committed to, and defines its own dependencies
and those dependencies’ versions. Each Lambda function should be fully
decoupled from a source code perspective from other Lambda functions, just as
it will be when it’s deployed. You don’t want to go through the process of
modernizing an application architecture to be modular and decoupled with
Lambda only to be left with a monolithic and tightly coupled code base.

Release Branches
We recommend that you create a repository or project branching strategy that
enables you to correlate Lambda function deployments with incremental
commits on a release branch. If you don’t have a way to confidently correlate
source code changes within your repository and the changes that have been
deployed to a live Lambda function, an operational investigation will always
begin with trying to identify which version of your code base is the one currently
deployed. You should build a CI/CD pipeline (more recommendations for this
later) that allows you to correlate Lambda code package creation and
deployment times with the code changes that have occurred with your release
branch for that Lambda function.

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 40

Testing
Time spent developing thorough testing of your code is the best way to ensure
quality within a serverless architecture. However, serverless architectures will
enforce proper unit testing practices perhaps more than you’re used to. Many
developers use unit test tools and frameworks to write tests that cause their
code to also test its dependencies. This is a single test that combines a unit test
and an integration test but that doesn’t perform either very well.

It’s important to scope all of your unit test cases down to a single code path
within a single logical function, mocking all inputs from upstream and outputs
from downstream. This allows you to isolate your test cases to only the code that
you own. When writing unit tests, you can and should assume that your
dependencies behave properly based on the contracts your code has with them
as APIs, libraries, etc.

It’s similarly important for your integration tests to test the integration of your
code to its dependencies in an environment that mimics the live environment.
Testing whether a developer laptop or build server can integrate with a
downstream dependency isn’t fully testing if your code will integrate
successfully once in the live environment. This is especially true of the Lambda
environment, where you code doesn’t have ownership of the events that are
going to be delivered by event sources and you don’t have the ability to create
the Lambda runtime environment outside of Lambda.

Unit Tests
With what we’ve said earlier in mind, we recommend that you unit test your
Lambda function code thoroughly, focusing mostly on the business logic outside
your handler function. You should also unit test your ability to parse
sample/mock objects for the event sources of your function. However, the bulk
of your logic and tests should occur with mocked objects and functions that you
have full control over within your code base. If you feel that there are important
things inside your handler function that need to be unit tested, it can be a sign
you should encapsulate and externalize the logic in your handler function
further. Also, to supplement the unit tests you’ve written, you should create
local test automation using AWS SAM Local that can serve as local end-to-end
testing of your function code (note that this isn’t a replacement for unit testing).

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 41

Integration Testing
For integration tests, we recommend that you create lower lifecycle versions of
your Lambda functions where your code packages are deployed and invoked
through sample events that your CI/CD pipeline can trigger and inspect the
results of. (Implementation depends on your application and architecture.)

Continuous Delivery
We recommend that you programmatically manage all of your serverless
deployments through CI/CD pipelines. This is because the speed with which you
will be able to develop new features and push code changes with Lambda will
allow you to deploy much more frequently. Manual deployments, combined
with a need to deploy more frequently, often result in both the manual process
becoming a bottleneck and prone to error.

The capabilities provided by AWS CodeCommit, AWS CodePipeline, AWS
CodeBuild, AWS SAM, and AWS CodeStar provide a set of capabilities that you
can natively combine into a holistic and automated serverless CI/CD pipeline
(where the pipeline itself also has no infrastructure that you need to manage).

Here is how each of these services plays a role in a well-defined continuous
delivery strategy.

AWS CodeCommit– Provides hosted private Git repositories that will enable
you to host your serverless source code, create a branching strategy that meets
our recommendations (including fine-grained access control), and integrate
with AWS CodePipeline to trigger a new pipeline execution when a new commit
occurs in your release branch.

AWS CodePipeline – Defines the steps in your pipeline. Typically an AWS
CodePipeline pipeline begins where your source code changes arrive. Then you
execute a build phase, execute tests against your new build, and perform a
deployment and release of your build into the live environment. AWS
CodePipeline provides native integration options for each of these phases with
other AWS services.

AWS CodeBuild – Can be used for the build state of your pipeline. Use it to
build your code, execute unit tests, and create a new Lambda code package.
Then, integrate with AWS SAM to push your code package to Amazon S3 and
push the new package to Lambda via AWS CloudFormation.

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 42

After your new version is published to your Lambda function through AWS
CodeBuild, you can automate your subsequent steps in your AWS CodePipeline
pipeline by creating deployment-centric Lambda functions. They will own the
logic for performing integration tests, updating function aliases, determining if
immediate rollbacks are necessary, and any other application-centric steps
needed to occur during a deployment for your application (like cache flushes,
notification messages, etc.). Each one of these deployment-centric Lambda
functions can be invoked in sequence as a step within your AWS CodePipeline
pipeline using the Invoke action. For details on using Lambda within AWS
CodePipeline, see this documentation.64

In the end, each application and organization has its own requirements for
moving source code from repository to production. The more automation you
can introduce into this process, the more agility you can achieve using Lambda.

AWS CodeStar – A unified user interface for creating a serverless application
(and other types of applications) that helps you follow these best practices from
the beginning. When you create a new project in AWS CodeStar, you
automatically begin with a fully implemented and integrated continuous
delivery toolchain (using AWS CodeCommit, AWS CodePipeline, and AWS
CodeBuild services mentioned earlier). You will also have a place where you can
manage all aspects of the SDLC for your project, including team member
management, issue tracking, development, deployment, and operations. For
more information about AWS CodeStar, go here.65

Sample Serverless Architectures
There are a number of sample serverless architectures and instructions for
recreating them in your own AWS account. You can find them on GitHub.66

Conclusion
Building serverless applications on AWS relieves you of the responsibilities and
constraints that servers introduce. Using AWS Lambda as your serverless logic
layer enables you to build faster and focus your development efforts on what
differentiates your application. Alongside Lambda, AWS provides additional
serverless capabilities so that you can build robust, performant, event-driven,
reliable, secure, and cost-effective applications. Understanding the capabilities
and recommendations described in this whitepaper can help ensure your

http://docs.aws.amazon.com/codepipeline/latest/userguide/actions-invoke-lambda-function.html
https://aws.amazon.com/codestar/
https://github.com/awslabs/aws-serverless-workshops

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 43

success when building serverless applications of your own. To learn more on
related topics, see Serverless Computing and Applications.67

Contributors
The following individuals and organizations contributed to this document:

• Andrew Baird, Sr. Solutions Architect, AWS

• George Huang, Sr. Product Marketing Manager, AWS

• Chris Munns, Sr. Developer Advocate, AWS

• Orr Weinstein, Sr. Product Manager, AWS

1 https://aws.amazon.com/lambda/

2 https://aws.amazon.com/api-gateway/

3 https://aws.amazon.com/s3/

4 https://aws.amazon.com/dynamodb/

5 https://aws.amazon.com/sns/

6 https://aws.amazon.com/sqs/

7 https://aws.amazon.com/step-functions/

8
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/WhatIsCloud
WatchEvents.html

9 https://aws.amazon.com/kinesis/

10 http://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-
function.html

11 http://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

12 http://docs.aws.amazon.com/lambda/latest/dg/get-started-create-
function.html

13 https://github.com/awslabs/aws-serverless-workshops

Notes

https://aws.amazon.com/serverless/
https://aws.amazon.com/lambda/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/s3/
https://aws.amazon.com/sns/
https://aws.amazon.com/sqs/
https://aws.amazon.com/step-functions/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/WhatIsCloudWatchEvents.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/WhatIsCloudWatchEvents.html
https://aws.amazon.com/kinesis/
http://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html
http://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html
http://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html
http://docs.aws.amazon.com/lambda/latest/dg/get-started-create-function.html
http://docs.aws.amazon.com/lambda/latest/dg/get-started-create-function.html
https://github.com/awslabs/aws-serverless-workshops

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 44

14 https://aws.amazon.com/blogs/compute/scripting-languages-for-aws-

lambda-running-php-ruby-and-go/

15 http://docs.aws.amazon.com/lambda/latest/dg/current-supported-
versions.html

16 https://github.com/awslabs/aws-sam-local

17 http://docs.aws.amazon.com/lambda/latest/dg/limits.html

18 http://docs.aws.amazon.com/lambda/latest/dg/API_CreateFunction.html

19
http://docs.aws.amazon.com/lambda/latest/dg/API_UpdateFunctionCode.ht
ml

20 http://docs.aws.amazon.com/lambda/latest/dg/java-programming-
model.html

21 http://docs.aws.amazon.com/lambda/latest/dg/programming-model.html

22 http://docs.aws.amazon.com/lambda/latest/dg/python-programming-
model.html

23 http://docs.aws.amazon.com/lambda/latest/dg/dotnet-programming-
model.html

24 http://docs.aws.amazon.com/lambda/latest/dg/java-logging.html

25 http://docs.aws.amazon.com/lambda/latest/dg/nodejs-prog-model-
logging.html

26 http://docs.aws.amazon.com/lambda/latest/dg/python-logging.html

27 http://docs.aws.amazon.com/lambda/latest/dg/dotnet-logging.html

28 http://docs.aws.amazon.com/lambda/latest/dg/programming-model-
v2.html

29 http://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

30 http://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-
function.html

31 http://docs.aws.amazon.com/lambda/latest/dg/API_PublishVersion.html

32
http://docs.aws.amazon.com/lambda/latest/dg/API_UpdateFunctionCode.ht
ml

33 http://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

https://aws.amazon.com/blogs/compute/scripting-languages-for-aws-lambda-running-php-ruby-and-go/
https://aws.amazon.com/blogs/compute/scripting-languages-for-aws-lambda-running-php-ruby-and-go/
http://docs.aws.amazon.com/lambda/latest/dg/current-supported-versions.html
http://docs.aws.amazon.com/lambda/latest/dg/current-supported-versions.html
https://github.com/awslabs/aws-sam-local
http://docs.aws.amazon.com/lambda/latest/dg/limits.html
http://docs.aws.amazon.com/lambda/latest/dg/API_CreateFunction.html
http://docs.aws.amazon.com/lambda/latest/dg/API_UpdateFunctionCode.html
http://docs.aws.amazon.com/lambda/latest/dg/API_UpdateFunctionCode.html
http://docs.aws.amazon.com/lambda/latest/dg/java-programming-model.html
http://docs.aws.amazon.com/lambda/latest/dg/java-programming-model.html
http://docs.aws.amazon.com/lambda/latest/dg/programming-model.html
http://docs.aws.amazon.com/lambda/latest/dg/python-programming-model.html
http://docs.aws.amazon.com/lambda/latest/dg/python-programming-model.html
http://docs.aws.amazon.com/lambda/latest/dg/dotnet-programming-model.html
http://docs.aws.amazon.com/lambda/latest/dg/dotnet-programming-model.html
http://docs.aws.amazon.com/lambda/latest/dg/java-logging.html
http://docs.aws.amazon.com/lambda/latest/dg/nodejs-prog-model-logging.html
http://docs.aws.amazon.com/lambda/latest/dg/nodejs-prog-model-logging.html
http://docs.aws.amazon.com/lambda/latest/dg/python-logging.html
http://docs.aws.amazon.com/lambda/latest/dg/dotnet-logging.html
http://docs.aws.amazon.com/lambda/latest/dg/programming-model-v2.html
http://docs.aws.amazon.com/lambda/latest/dg/programming-model-v2.html
http://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html
http://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html
http://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html
http://docs.aws.amazon.com/lambda/latest/dg/API_PublishVersion.html
http://docs.aws.amazon.com/lambda/latest/dg/API_UpdateFunctionCode.html
http://docs.aws.amazon.com/lambda/latest/dg/API_UpdateFunctionCode.html
http://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 45

34 http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

35 http://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

36 http://docs.aws.amazon.com/lambda/latest/dg/vpc.html

37 https://aws.amazon.com/blogs/compute/robust-serverless-application-
design-with-aws-lambda-dlq/

38 http://d0.awsstatic.com/whitepapers/architecture/AWS_Well-
Architected_Framework.pdf

39 https://aws.amazon.com/sdk-for-java/

40 https://aws.amazon.com/cognito/

41
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/speci
fying-conditions.html

42
http://docs.aws.amazon.com/cognitoidentity/latest/APIReference/API_GetC
redentialsForIdentity.html

44 https://aws.amazon.com/elasticache/

45
http://docs.aws.amazon.com/lambda/latest/dg/env_variables.html#env_enc
rypt

46 http://docs.aws.amazon.com/systems-manager/latest/userguide/systems-
manager-paramstore.html

47 http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

48 http://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-
generate-sdk.html

49 http://docs.aws.amazon.com/apigateway/latest/developerguide/use-custom-
authorizer.html

50 http://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-
control-access-to-api.html

51 https://aws.amazon.com/codepipeline/

http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
http://docs.aws.amazon.com/lambda/latest/dg/vpc.html
https://aws.amazon.com/blogs/compute/robust-serverless-application-design-with-aws-lambda-dlq/
https://aws.amazon.com/blogs/compute/robust-serverless-application-design-with-aws-lambda-dlq/
http://d0.awsstatic.com/whitepapers/architecture/AWS_Well-Architected_Framework.pdf
http://d0.awsstatic.com/whitepapers/architecture/AWS_Well-Architected_Framework.pdf
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/cognito/
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/specifying-conditions.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/specifying-conditions.html
http://docs.aws.amazon.com/cognitoidentity/latest/APIReference/API_GetCredentialsForIdentity.html
http://docs.aws.amazon.com/cognitoidentity/latest/APIReference/API_GetCredentialsForIdentity.html
https://aws.amazon.com/elasticache/
http://docs.aws.amazon.com/lambda/latest/dg/env_variables.html#env_encrypt
http://docs.aws.amazon.com/lambda/latest/dg/env_variables.html#env_encrypt
http://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-paramstore.html
http://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-paramstore.html
http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-generate-sdk.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-generate-sdk.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/use-custom-authorizer.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/use-custom-authorizer.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-control-access-to-api.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-control-access-to-api.html
https://aws.amazon.com/codepipeline/

Amazon Web Services – Serverless Architectures with AWS Lambda

Page 46

52 http://docs.aws.amazon.com/lambda/latest/dg/vpc.html#vpc-setup-

guidelines

53
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIs
CloudWatchLogs.html

54 http://docs.aws.amazon.com/lambda/latest/dg/lambda-x-ray.html

55 http://docs.aws.amazon.com/lambda/latest/dg/lambda-x-ray.html

56 https://github.com/awslabs/serverless-application-model

57 https://github.com/awslabs/serverless-application-model

58 https://github.com/awslabs/aws-sam-local

59 http://docs.aws.amazon.com/lambda/latest/dg/current-supported-
versions.html

60 http://docs.aws.amazon.com/lambda/latest/dg/java-exceptions.html

61 http://docs.aws.amazon.com/lambda/latest/dg/nodejs-prog-mode-
exceptions.html

62 http://docs.aws.amazon.com/lambda/latest/dg/python-exceptions.html

63 http://docs.aws.amazon.com/lambda/latest/dg/dotnet-exceptions.html

64 http://docs.aws.amazon.com/codepipeline/latest/userguide/actions-invoke-
lambda-function.html

65 https://aws.amazon.com/codestar/

66 https://github.com/awslabs/aws-serverless-workshops

67 https://aws.amazon.com/serverless/

http://docs.aws.amazon.com/lambda/latest/dg/vpc.html#vpc-setup-guidelines
http://docs.aws.amazon.com/lambda/latest/dg/vpc.html#vpc-setup-guidelines
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatchLogs.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatchLogs.html
http://docs.aws.amazon.com/lambda/latest/dg/lambda-x-ray.html
http://docs.aws.amazon.com/lambda/latest/dg/lambda-x-ray.html
https://github.com/awslabs/serverless-application-model
https://github.com/awslabs/serverless-application-model
https://github.com/awslabs/aws-sam-local
http://docs.aws.amazon.com/lambda/latest/dg/current-supported-versions.html
http://docs.aws.amazon.com/lambda/latest/dg/current-supported-versions.html
http://docs.aws.amazon.com/lambda/latest/dg/java-exceptions.html
http://docs.aws.amazon.com/lambda/latest/dg/nodejs-prog-mode-exceptions.html
http://docs.aws.amazon.com/lambda/latest/dg/nodejs-prog-mode-exceptions.html
http://docs.aws.amazon.com/lambda/latest/dg/python-exceptions.html
http://docs.aws.amazon.com/lambda/latest/dg/dotnet-exceptions.html
http://docs.aws.amazon.com/codepipeline/latest/userguide/actions-invoke-lambda-function.html
http://docs.aws.amazon.com/codepipeline/latest/userguide/actions-invoke-lambda-function.html
https://aws.amazon.com/codestar/
https://github.com/awslabs/aws-serverless-workshops
https://aws.amazon.com/serverless/

	Abstract
	Introduction - What Is Serverless?
	AWS Lambda—the Basics
	AWS Lambda—Diving Deeper
	Lambda Function Code
	The Function Code Package
	The Handler
	The Event Object
	The Context Object
	Writing Code for AWS Lambda—Statelessness and Reuse

	Lambda Function Event Sources
	Invocation Patterns
	Push Model Event Sources
	Pull Model Event Sources

	Lambda Function Configuration
	Function Memory
	Versions and Aliases
	IAM Role
	Lambda Function Permissions
	Network Configuration
	Environment Variables
	Dead Letter Queues
	Timeout

	Serverless Best Practices
	Serverless Architecture Best Practices
	Security Best Practices
	Reliability Best Practices
	High Availability
	Fault Tolerance
	Recovery

	Performance Efficiency Best Practices
	Choosing the Optimal Memory Size
	Language Runtime Performance
	Optimizing Your Code
	Understanding Your Application Performance

	Operational Excellence Best Practices
	Logging
	Metrics and Monitoring
	Deployment
	Load Testing
	Triage and Debugging

	Cost Optimization Best Practices
	Right-Sizing
	Distributed and Asynchronous Architectures
	Batch Size
	Event Source Selection

	Serverless Development Best Practices
	Infrastructure as Code – the AWS Serverless Application Model (AWS SAM)
	Local Testing – AWS SAM Local
	Coding and Code Management Best Practices
	Coding Best Practices
	Business Logic outside the Handler
	Warm Containers—Caching/Keep-Alive/Reuse
	Control Dependencies
	Trim Dependencies
	Fail Fast
	Handling Exceptions

	Code Management Best Practices
	Code Repository Organization
	Release Branches

	Testing
	Unit Tests
	Integration Testing

	Continuous Delivery

	Sample Serverless Architectures
	Conclusion
	Contributors

