
1

WHITEPAPER

THE TOP SIX
MICROSERVICES PATTERNS

CONTENTS

CONTENTS... 2

HOW TO CHOOSE THE RIGHT ARCHITECTURE FOR YOUR
ORGANIZATION .. 3

INTRODUCTION .. 5

THE 6 MICROSERVICES PATTERNS .. 8

SECTION I: INTRODUCTORY PATTERNS ..10

Fine-grained SOA ..10

Layered APIs over fine-grained SOA ...16

SECTION II: MANAGED STATE PATTERNS ..21

Message-oriented state management over layered APIs ..22

Event-driven state management over layered APIs ...27

Isolating state in layered APIs ...32

Replicating state in layered APIs (event sourcing) ...38

SECTION III: FOUNDATIONAL BEST PRACTICES FOR
ESTABLISHING THE MICROSERVICES PATTERNS ...43

CONCLUSION: ESTABLISH A MICROSERVICES PATTERN
THAT’S RIGHT FOR YOU ..50

ABOUT MULESOFT ... 51

3

HOW TO CHOOSE THE RIGHT ARCHITECTURE
FOR YOUR ORGANIZATION

For the last several years, microservices has been a buzzword in the IT
press. Technology consulting firm Thoughtworks has declared that “a
microservices architecture as a programming model” is a rising trend1,
whereas ZDNet said it was a “technology to watch.”2 The press is ex-
pressing its endorsement of microservices, which might make archi-
tects and IT executives feel a fear of missing out on the next exciting
trend.

The problem with the supposed imperative to adopt microservices is
that there are many people who feel that it is a prescriptive architec-
ture; it must be done one certain way — like Netflix, for example — or
it simply can’t be done. But adopting microservices this way is not fea-
sible for many organizations and can lead to failure. For organizations
that have particular structures and cultures, a purist view of micros-
ervices can only go so far because of various legal, technological, and
cultural constraints. Organizations will fail if they follow an overly pre-
scriptive point of view in the microservices space if their needs are not
compatible with the purist approach.

For example, MuleSoft works with a global food and beverage provider,
who, because of the nature of their business, will not do 100 updates a
day like a Netflix might. At most, they will do an update every 10 days,

1 Krill, Paul. “Docker, machine learning are top tech trends for 2017.” November 7, 2016.
2 Hinchcliffe, Dion. “The enterprise technologies to watch in 2016.” May 29, 2016

4

because of the different nature of their business. So why do they have
to deploy using the purist approach when they don’t have the same
needs? Large enterprises with a lot of legacy systems have different
needs than younger companies, so their culture might not fit with a
purist approach to microservices either. Finally, some enterprises, par-
ticularly in highly regulated industries, have different security or com-
pliance needs than a Netflix or a Spotify. In that case, constant software
updates might not be feasible or even legal, further necessitating a de-
parture from “pure” microservices.

In reality, trying to adapt to a microservices architecture needs to be
done pragmatically, in a way that makes sense for your organization.
Not every company has to be a Netflix or a Spotify. You can adopt mi-
croservices in a way that meshes with your culture, your goals, and
your own organization.

Instead of adopting microservices as a singular approach — which
would defy the point of the architecture — we propose considering mi-
croservices as a series of overlapping patterns that you can pick and
choose depending on your organization’s needs. There’s no need to
adopt every aspect of microservices all at once; it can be adopted in a
pragmatic way in a manner that makes sense for your organization.

5

INTRODUCTION

In 1987, chef Ferran Adrià heard the seminal phrase “creativity means
not copying”3 this simple, self-evident statement drove a major move-
ment within the culinary world. We can state a similarly simple, yet po-
tentially profound statement with microservices: “microservices are not
a monolith.”

Originally created as an alternative to a monolith, microservice pat-
terns should inherently be non-monolithic: change is easy, units are
small, scalability is semi-infinite. This also means that microservices are
not just one thing. Rather, we posit that microservices are a category of
grouped, related patterns that share the same set of goals. This is anal-
ogous to database systems; they all share similar goals — typically with
different priorities like scalability or maintainability. Yet,et their spe-
cifics differ significantly. For example, RDBMSes, NoSQL Stores, Time
Series Databases, and Big Data Stores, etc. all share a similarity — they
offer the ability to store and query data — yet the specifics of their indi-
vidual trade-offs couldn’t be more different.

This whitepaper will highlight a taxonomy of microservices patterns
that have been practiced in the wild. Each of these patterns cannot be
seen as better or worse than another, but rather as choosing a specific
set of trade-offs that prioritize different things along the way. They all
obey the microservices architectural goals (speed, scalability, cohesion)

3 Adrià, Ferran. The History of El Bulli.

6

but arrive at them in different ways. It can even be argued that some of
the patterns are “steps along the journey,” where they move an archi-
tecture forward towards the microservices goals. In and of themselves
they tend to produce predictable failure conditions that then encour-
age a team working in this way to seek alternatives, to make harder
trade-offs, and then to evolve to a different, more specialized pattern
based on their growing experience.

This is certainly how microservices architecture came to be. It started
with a conceptual approach and set of goals that resulted in a first it-
eration, then it was iterated relentlessly towards the more specialized
(many would view as more “extreme”) patterns. This is not a bad thing.
Organizations that are implementing or living with these early-stage
patterns have not done something retrograde, but rather have im-
proved their current state to the stage where they now can clearly see
the benefits of taking the next step. This is one way that microservices
architectures are very “real-world”; they follow the pattern of human
learning. Implementers (at least for now) are all humans and need to
learn the value of more specific patterns and trade-offs through person-
al experience, rather than by slavishly following any particular text or
blog post.

Microservice architectures should be evolutionary. Because they are
defined by an ability to change rapidly, the approach to building a sys-
tem develops over many iterations. It is relatively uncommon in most
organizations to have the luxury of implementing a microservices ar-
chitecture from the ground up (and many consider it an anti-pattern
to do so). As such, there will usually be a continuum of architectures,

7

patterns, and technologies in play based on maturity, need, and timing.
Some of this is driven by a team’s ability to absorb change, some of it
depends on setting up enabling infrastructure, and some of it depends
on organizational change and restructuring teams around, for example,
DevOps practices. The ability to focus on what can be done right now
while enabling teams to keep evolving towards a more productive state
is one of the key strengths of microservice architectures.

8

THE 6 MICROSERVICES PATTERNS

Below is a taxonomy of the 6 microservices patterns available to make
adopting this architecture an easier task for your organization. Each of
these patterns is not a general pattern; rather, each organization can
choose to make a set of trade-offs that prioritize particular things over
others. It is our hope that users who implement a particular pattern will
use this as a reference in order to plan their architecture following these
patterns, rather than attempting to over-apply any single pattern and
therefore break it through compromise. The intended state is to design
and implement a microservices architecture using a mixture of these
patterns, rather than choose one and migrate towards it.

No single one of these patterns is better than the others, but each is
uniquely better at a particular task. We attempt to make it clear what
that task is when describing each pattern.

As a final note, we should emphasize that microservices architecture
is not appropriate for every use case. If you depend heavily on an ERP
application, for example, and have no intention to remove it, micros-
ervices probably aren’t for you. It’s unlikely, however, that there aren’t
parts of your business that would benefit from speed, scale, and cohe-
sion. Those are the areas where you should look to take advantage of
this rapidly growing ecosystem.

These patterns don’t apply specifically to any one size or type of or-
ganization. It’s true that the patterns that address state management

9

specifically tend to be more useful to large-scale, fast-moving compa-
nies. However, they can be applied to any kind of business or company
that has an appropriate need and is willing to balance the needs of
their architecture correctly. In other words, “where you stop” is entirely
dictated by the problems you’re trying to solve, rather than any linear
progression through these patterns.

10

SECTION I:
INTRODUCTORY PATTERNS

FINE-GRAINED SOA

Fine-grained SOA is arguably the “big bang” of microservices. To many,
Netflix is the origin of this style of architecture, and this was their own

MONOLITH
“ENTERPRISE

RESOURCE
PLANNING”

MONOLITH “CUSTOMER RELATIONSHIP MANAGEMENT”

DELETE
FROM CART

CHECKOUT

CREATE
CART

UPDATE PRODUCT
CODE

DELETE
CART

ADD
TO CART

CHECK
INVENTORY

CHANGE PHONE
NUMBER

PRICE
ITEM

GET SHIPPING
ADDRESS

CUSTOMER
MANAGEMENT

ORDER
MANAGEMENT

INVENTORY
MANAGEMENT

DELETE
FROM CART

CHECKOUT CREATE
CART

UPDATE PRODUCT
CODE

DELETE
CART

ADD
TO CART

CHECK
INVENTORY

CHANGE PHONE
NUMBER

PRICE
ITEM

GET SHIPPING
ADDRESS

RESULTS IN

11

articulation of the pattern at the beginning. Fine-grained SOA is some-
what self-explanatory (at least, to SOA practitioners); it reduces the is-
sues experienced with SOA, and applies the same principles, but breaks
down the design into smaller, more fine-grained pieces. Small services
are, in fact, what most people still think of as the only microservices
pattern.

However, along the way, Netflix and others following this path have ex-
perienced a number of basic issues with this pattern. When you make
things smaller, and attempt to scale them, some difficulties emerge:

Where you used to make a single network call, now you must make
tens or even hundreds of calls. This is inefficient.4

Where you used to manage a small number of things, now you manage
hundreds or thousands or more. Your management tools therefore no
longer work as well for you.

When tens, hundreds, or thousands of things all can query or modify
the state of your central applications, it becomes almost impossible to
trust the consistency of that store as accessed through any one of these
microservices.

The overlooked challenges of truly living with microservices include in-
efficient inter-process communications, overarching monitoring, man-
agement, and governance; and consistent state.

4 Note that high efficiency inter-process communications frameworks are very available now (gRPC, Avro, Hystrix, Fina-
gle) so this isn’t a long-term concern. Rather, it should be something to flag. If you plan to do microservices, raw HTTP/
JSON or XML will eventually become too inefficient for the pattern at high scale.

12

In most cases, this pattern is applied as an extension of service-orient-
ed integration, where the point of each service is to provide connectivi-
ty to external systems. This forms tight dependencies to those external
stores, making speed of change drag, and making the cohesion of the
system reflect the internal state of those applications.

When you begin to implement fine-grained SOA, be aware of what
you’re getting into. These pain points will emerge if you succeed, and
you should be ready for them. When the pain becomes significant
enough, you will inevitably need to seek out other patterns.

PROBLEM:
Coarse-grained services are too difficult to change without side effects,
and the monolithic nature of traditional architecture is “holding the
teams back.”

SOLUTION:
Break up services into finer-grained pieces, which reduces the scope of
any given change, allowing it to happen more easily.

13

APPLICATION:
Services are broken up into finer-grained microservices, typically each with a single purpose.

Impacts:

 ◆ Traffic increases.

 ◆ The number of services managed becomes large.

 ◆ Traditional monitoring solutions become insufficient.

 ◆ The automation of integration, testing, and deployment become critical.

 ◆ The orchestration of microservices becomes necessary.

 ◆ The ability to change rapidly is improved.

GOALS:
Speed of change.

Scalability: You can theoretically improve scalability, but it practically
tends to decrease unless supporting automation infrastructure is put in
place.

14

KEY CHARACTERISTICS:
It works well at low scale, but pain emerges at high scale.

The focus is on small services, but “-ilities” (e.g. scalability, reliability, etc.) typically have not
been considered.

It tends to be integration-centric, with each microservice depending on external systems.5

There is inefficient inter-process communication in order to achieve high speed of change.

Data consistency and state management is poor 6 but allows existing systems to be leveraged.

Due to similarity to existing patterns, existing problems tend to happen.

HOW DOES THIS COEXIST WITH EXISTING
SYSTEMS, SOA, OR APIs?
This pattern is very similar to SOA and API-led approaches and leverag-
es more value out of existing systems. The coexistence model is simple
and, as such, it causes most of the friction with this model since the low
speed of change on existing assets can cause a drag on the microser-
vices approach.

5 Note that, generally speaking, microservices and APIs in general are increasingly treated as “external” assets—whether
they are or not. This is what we at MuleSoft often refer to as “productized” APIs, where, regardless of context, every
point of interconnectivity is treated as something that is robust and ready to be used across any permissible context.

6 There are multiple data masters, but the architecture doesn’t typically address the existence of a source of truth or use
a specific consistency model. There are often multiple ways to make a change to data that can have cascading impact,
which is difficult to understand or respond to.

16

LAYERED APIs OVER FINE-GRAINED SOA

MuleSoft advocates an approach termed “API-led connectivity.” Simply
speaking, this can be thought of as a layered approach to API design
(at least for the purposes of this paper). System APIs expose systems,
Process APIs orchestrate them, and Experience APIs provide end-user
experiences. This approach is well-aligned with fine-grained SOA and,
often, the two either can co-exist or else fine-grained, layered APIs be-
come an evolutionary pattern that follows fine-grained SOA.

This approach gives some structure to a fine-grained API approach, al-
lowing some ability to consistently manage and reason with the APIs or

EXPERIENCE LAYER

ADD
TO CART

DELETE
FROM CART

CREATE
CART

DELETE
CART

PROCESS OR DOMAIN LAYER

CHECKOUTPRICE ITEM

PROCESS OR DOMAIN LAYER

CHECK
INVENTORY

UPDATE PRODUCT
CODE

CHANGE PHONE
NUMBER

GET SHIPPING
ADDRESS

MONOLITH
“ENTERPRISE RESOURCE

PLANNING”

MONOLITH
“CUSTOMER RELATIONSHIP

MANAGEMENT”

17

microservices. However, there are some deep issues with this approach
that are similar to fine-grained SOA (which are intuitive):

Where fine-grained SOA makes a single network call, now you must
make multiple calls through the layers. This can be inefficient from the
perspective of “network hops,” however, the existence of layers does
not mandate them. Calls directly across layers are completely valid; the
goal of layering is to increase flexibility while also structuring the archi-
tecture in a way that separates concerns well.

Where fine-grained SOA manages a large number of things, with lay-
ered APIs you manage multiple layers of a large number of fine-grained
things. Your management tools no longer work as well as they used to,
as they may not have ways of visualizing complex microservices views.

End-application datastore consistency is actually improved because
the set of things that modify or query them are organized and focused
(i.e. System APIs).

Ultimately, this a good pattern for most enterprises, but, like fine-
grained SOA, there will be pain along the way. However, this pain ex-
hibits mostly at large scale, so one should only plan for other patterns
when high scale is expected or experienced.

PROBLEM:
Microservices architectures without some amount of structure are dif-
ficult to rationalize and reason with, as there is no obvious way to cate-
gorize and visualize the purpose of each microservice.

18

SOLUTION:
By creating layers of microservices that are grouped by purpose (sys-
tems, processes or domain models, and experience), you can manage
the complexity of the architecture more easily.

APPLICATION:
Microservices are categorized into layers. Often, standards can be put in
place to make microservices that have similar purposes behave in simi-
lar ways, which further rationalizes complexity.

IMPACTS:
The ability to change rapidly is improved through standardization and further decomposition.

The number of inter-process calls can be increased because of the more specialized
microservices structures.

Monitoring and visualization tools may need to be reviewed for their ability to work with the
layered structure correctly.

GOALS
Speed of change.

Scalability: it can theoretically improve scalability, but practically
tends to decrease unless supporting automation infrastructure is put in
place.

19

KEY TRADE-OFFS:
There is inefficient IPC in order to achieve high speed of change.

Data consistency and state management is poor but allows high degrees of reuse. Reuse itself
trades off against speed of change.

Due to similarity to existing patterns, existing problems tend to emerge.

It works well at low scale, pain emerges at high scale.

There is high cohesion due to structured architectural approach.

The focus is on the small services, but “-ilities” typically have not been considered.

It tends to be integration-centric, with each system microservice depending on external
systems. This reduces speed of change.

HOW DOES THIS PATTERN COEXIST WITH
EXISTING SYSTEMS LIKE SOA OR APIs?
This approach tends to be the best way to coexist with existing assets.
Because the layering reduces the scope of each microservice as well as
focuses its purpose, it is able to connect and leverage existing systems
best without causing significant slowdown.

However, coordinating changes that ripple through a fine-grained and
also layered design can be challenging to work with. You may need to
employ technologies to manage the contracts between all the different
pieces or employ thorough automated testing technology to ensure
that changes don’t break things.

21

SECTION II:
MANAGED STATE PATTERNS

The following patterns are all focused on managing state. State is ulti-
mately one of the most challenging aspects to a distributed architec-
ture, because traditional system design favors consistent data queries
and mutations even though consistency is difficult (if not arguably im-
possible) in a sufficiently distributed architecture.

Because many of our customers’ microservice designs are focused on
integration use cases, the issue of managing state comes front and cen-
ter after even a small amount of success. This is because providing con-
nectivity or integration means that the microservices system is inher-
ently either querying or mutating state (or both). They may not be the
only way to do so for a given entity or piece of information. This means
that in order to avoid data corruption or unexpected results, you need
to consider one of two strategies:

Explicitly declare state and use a strategy to deal with the side effects
of mutating and querying it.

By doing so, you can achieve a greater level of physical autonomy for
each component, allowing a faster rate of change.

22

MESSAGE-ORIENTED STATE MANAGEMENT
OVER LAYERED APIs

This is usually the first pattern implemented as a way to avoid the side
effects of accessing and mutating state. By providing an asynchronous
queue as the primary mechanism to communicate state changes (by
command or event) or to query other microservices, we allow each mi-
croservice the time necessary to converge events and therefore provide
a consistent external view.

EXPERIENCE LAYER

ADD
TO CART

DELETE
FROM CART

CREATE
CART

DELETE
CART

PROCESS OR DOMAIN LAYER

CHECKOUTPRICE ITEM

SYSTEM LAYER

CHECK
INVENTORY

UPDATE PRODUCT
CODE

CHANGE PHONE
NUMBER

GET SHIPPING
ADDRESS

M
ES

SA
GE

 Q
UE

UE

ANY
MESSAGE

MONOLITH
“ENTERPRISE RESOURCE

PLANNING”

MONOLITH
“CUSTOMER RELATIONSHIP

MANAGEMENT”

23

This pattern is commonly used by teams experienced with SOA and
ESBs, as it is an intuitive path to follow given their prior experience.

We recommend that this pattern is used as a transitory state; this
should be used by an organization beginning the microservices jour-
ney, but it may not suit your needs as your approach becomes more
mature. By decoupling components temporally using a queue, the im-
plementation and behavior of each microservice becomes obscured,
meaning that often the side effects of the design become even more
prominent than when simply exposing existing systems to a microser-
vices design. It is not uncommon, for example, to see messages used
to propagate events, commands, batches, or even to just stream data,
all appearing at a high level to be the same thing. This can make sys-
tems unpredictable, which in more traditional environments (e.g. ESBs)
is manageable, but when moving to microservices scale (thousands of
services, hundreds of thousands of message types), it becomes rapidly
impractical to reason with. This pattern is therefore often a transitory
step, where success translates into teams realizing that at a basic level
queueing is useful, but in order to really succeed they need to establish
some standards around what is passed over the queues.

PROBLEM:
In order to ensure data integrity, there is a need to replicate the state of
key business data between microservices or data stores.

24

SOLUTION:
Using a message queue allows state to be asynchronously and reliably
sent to different locations.

APPLICATION:
When a change in data occurs, it is sent as a message over a queue or
ESB to any other microservice or store that needs to be notified of the
change.

IMPACTS:
It can increase complexity as it provides a new way for state to change and move.

It does not offer any standard patterns, so the implementation can be inconsistent unless
standards are agreed and applied.

It does not offer any specific opinions as to how to deal with data conflicts or to rebuild state in
the case of failures or outages.

GOALS:
Scalability: using message queues provides the means to scale task
processors independently from task producers, with a reliability layer
between them.

25

KEY TRADE-OFFS:
There is an inefficient IPC due to asynchronicity.

Data consistency and state management are made worse by the unpredictability of behavior
and the potential side effects of a given message. Reuse is actually hampered by the inability to
predict the use patterns.

Due to similarity to existing patterns, existing problems tend to emerge.

It works well at high scale technically but tends to become operationally unpredictable.

There is poor cohesion due to lack of design standards.

HOW DOES THIS CO-EXIST WITH EXISTING
SYSTEMS, SOA, OR APIs?
This approach may be the best way for existing assets and connectivity
to coexist with minimal change. By decoupling at the interface level us-
ing messages, you gain a great deal of flexibility and reliability. The abil-
ity to transform and route messages in the message layer means that
changes can be kept isolated to their source, rather than happening at
the interface level.

This increased flexibility comes with a lack of visibility and may require
new management tools and troubleshooting techniques. For example,
a common step is to add tracking data into message headers to under-
stand the path a given message has taken, for troubleshooting and de-
bugging purposes.

27

EVENT-DRIVEN STATE MANAGEMENT OVER
LAYERED APIs

Event-driven architectures are nothing new. Mule ESB, for example,
was originally designed as an event-driven system. But when overlaid
on microservice patterns they provide some powerful abstractions.
Event-driven systems usually use a queue of some kind (like mes-
sage-oriented systems) but enforce a standard around the design and
behavior of what is passed over the queue; specifically, the concept of
an event.

EXPERIENCE LAYER

ADD
TO CART

DELETE
FROM CART

CREATE
CART

DELETE
CART

PROCESS OR DOMAIN LAYER

CHECKOUTPRICE ITEM

SYSTEM LAYER

CHECK
INVENTORY

UPDATE
PRODUCT CODE

CHANGE PHONE
NUMBER

GET SHIPPING
ADDRESS

EVENT
PROPAGATION

Event examples:
AddToCart,

DeletedFromCart,
ItemPriced, CheckedOut,
PhoneNumberChanged

Events that
have occurred
in the past

MONOLITH
“ENTERPRISE RESOURCE

PLANNING”

MONOLITH
“CUSTOMER

RELATIONSHIP
MANAGEMENT”

28

People confuse this pattern with other patterns and, as a result, it cov-
ers a wide array of designs. Strictly, an event is something that occurred
in the past with an associated representative state and timestamp.
This event allows any service receiving it to reconstruct a materialized
view of the state by replaying the events in order. However, in many im-
plementations, the concept is muddied, where events (e.g. something
happened) are mixed with commands (e.g. make something happen)
and without the distinction, the predictability of the design is flawed.
That said, this approach is undeniably better than message-orientation
(due to its more specific design), but tends to have problems in imple-
mentation due to a lack of consistency. Teams that articulate and en-
force a consistent standard will find this pattern tends to work very well
in microservices architectures.

PROBLEM:
In order to ensure data integrity, there is a need to replicate key busi-
ness events to synchronize between microservices or data stores.

SOLUTION:
Use a common event abstraction to represent the unit of change in the
architecture.

APPLICATION:
When something changes in the business, an event encapsulating it in
the past tense is sent to interested parties. Changes in the business are
the product of these events being sent and processed.

29

IMPACTS:
It can increase complexity as it provides a new way for state to change and move.

It does not offer any standard patterns, so the implementation can be inconsistent unless
standards are agreed and applied.

It does not offer any specific opinions as to how to deal with data conflicts or to rebuild state in
the case of failures or outages.

GOALS:
Cohesion: this architecture is very easy to work with and understand
due to its standardized nature.

Scalability: it requires deeper technical decisions (how do you send/
process/store events? What about retransmission?) but is achievable.

Speed of change: this will occur due to the more cohesive architec-
ture, but without dependency analysis, the tooling relies a little too
much on tribal knowledge and luck.

30

KEY TRADE-OFFS:
There is efficient IPC due to asynchronicity.

The flexibility of design is lost in favor of predictable behavior.

Data consistency and state management are improved through a specific model of
consistency; any given state is merely a reconstruction of events.

Due to similarity to message-orientation, confusion can occur where events are mixed up with
commands.

There is an effective scaling model with reasonable operational oversight.

There is strong cohesion when applied consistently, but cohesion tends to drift over time.

HOW DOES THIS COEXIST WITH EXISTING
SYSTEMS, SOA, OR APIs?
Event-driven systems can coexist with existing systems, but they tend
to require a “translation layer” across the boundary of the event-driven
parts of the architecture with those that aren’t event-driven. In essence,
the event-driven system talks a consistent language internally, and any-
thing on the outside needs to be converted (in or out) to participate.

This makes for a clean way to separate the event-driven parts of the
architecture from traditional integration and enterprise systems, but it
does mean that you tend to create “new” functionality with event-driv-
en microservices that update out of band or sync with the systems and
APIs outside of the boundary.

32

ISOLATING STATE IN LAYERED APIs

An alternative to coalescing the exchange pattern of a microservices
architecture (for example, into events) is to coalesce the internal consis-
tency of each microservice. Rather than expect consistency in the inter-
change, expect consistency at the time of query.

EXPERIENCE LAYER

CART MICROSERVICE
DURABLE CART

STORAGE

PROCESS OR DOMAIN LAYER

PRICING MICROSERVICE
DURABLE PRICE

STORAGE

INVENTORY LEVELS
MICROSERVICE

DURABLE
INVENTORY LEVEL

STORAGE

MONOLITH
“ENTERPRISE RESOURCE

PLANNING”

DELAYED, EVENTUALLY CONSISTENT WRITES (NO READ/QUERY CAPABILITY)

33

This is done most commonly by isolating state or, in other words, “each
microservice contains its own state.” In this pattern, each microser-
vice contains an internal data store that it constantly reconciles with
external stores (be they an event log or an enterprise asset) so that it
becomes the “single source of truth.” This can be difficult because sin-
gle source of truth patterns tend to echo the complexity of master data
management and its associated challenges.

However, using an external store as a single source of truth with micro-
services is much more practical, because of the typically single-pur-
pose nature of a given microservice. It’s difficult to isolate the state of a
customer, for example, but it’s not so difficult to isolate the state of the
customer’s email address. This pattern, therefore must, by design, fa-
vor extremely granular microservices in order to succeed. It also typical-
ly requires asynchronous event propagation as a means to pass state
change from one point to another. This pattern can also be thought of
as something of a “distributed database,” with each microservice al-
most representing a column in a traditional RDBMS design.

Microservices contain a data store that is the source of truth for the en-
tity they represent. For example, a “product” microservice could con-
tain a MySQL database that contains all information about the product
and is the only way to query or update that concept in the organization.

Unlike more SOA-oriented patterns, reuse doesn’t tend to be a priori-
ty in these designs. Each microservice has a “use,” certainly, often ac-
cessed from different contexts, but each microservice isn’t designed

34

with reuse in mind. If reuse occurs, it’s accidental, not with the intention
that comes with SOA.7

PROBLEM:
It is difficult to achieve data integrity when there are multiple sources of
truth.

SOLUTION:
Nominate a microservice that represents the single source of truth for
each given business entity, and encapsulate the state inside the micro-
service.

APPLICATION:
Microservices contain a data store that is the source of truth for the en-
tity they represent. For example, a “product” microservice could con-
tain a MySQL database that contains all information about the product,
and is the only way to query or update that concept in the organization.

IMPACTS:
It requires some governance to ensure that data is not copied or has
other modes of access.

7 SOA emphasizes designing any one thing to have many uses, to be “reusable.” By contrast, more and more specific
microservice patterns emphasize “do one thing and one thing well.” Don’t cater to every possible use case, but be
focused and simple. Ironically, “reuse” is more common in these designs, because a simple thing that is reasonable
tends to be useful in many contexts. Reuse is more successful when driven by simplicity than by intention.

35

It can be difficult to enforce when working with existing assets such
as ERPs, where a “strangler” pattern must be employed to replace the
existing system’s data stores with the new microservices architecture
piece by piece.

It sidesteps the issue of data synchronization, so if data entities get out
of sync there is no easy fallback position.

GOALS:
Cohesion: this architecture is very easy to work with and understand
due to its standardized nature.

Scalability: it is very scalable (each small component can implement
its own scaling model).

Speed of change: it is good due to the more cohesive architecture, but
requires governance to ensure the architecture is not breached.

KEY TRADE-OFFS:
There is efficient IPC due to asynchronicity.

It has a very flexible design, so speed of change is high.

The data consistency is good: there is a single source of truth.

Scalability may pose challenges, as scaling a process also requires scaling a data store with it.

It’s difficult, at scale, to divide a data model into completely independent pieces. At some stage,
consistency between the views becomes important.

36

HOW DOES THIS COEXIST WITH EXISTING
SYSTEMS, SOA, OR APIs?
It doesn’t. If you build a microservice with isolated state, it’s important
that it is the “source of truth and function” for its stated purpose. If you
have an existing system that also deals with the same data or function,
you will need to synchronize it out of band, and it’s typically a bad pat-
tern to implement two-way sync here.

This approach typically pairs well with the “strangler” pattern, where
you seek to reduce the use of a given enterprise application or another
system that does not give you the time to value you need. Over time,
you replace its functions with these isolated microservices and you de-
activate those particular functions in the original system.

To put it another way, this is not an integration pattern. The goal here
is to create a new, fast-moving partial implementation using microser-
vices. This will allow you to gain speed and scale advantages that exist-
ing technology has not been able to provide you.

38

REPLICATING STATE IN LAYERED APIs
(EVENT SOURCING)

EXPERIENCE LAYER

CART HANDLER
CACHE

PROCESS OR DOMAIN LAYER

PRICE ITEM
CACHE

CHECK INVENTORY
CACHE

APPEND QUERY

DURABLE EVENT LOG (STORE)

ADDED 1 ITEM
TO CART

SUBTRACTED
1 FROM INVENTORY

DELETED 2 ITEMS
FROM CART

ORDER
CREATED

PRICED ITEM
AT x

ORDER
CANCELED

39

Replicating state is essentially the antidote to the problems that
emerge from isolating state; specifically, that consistency is required. A
simple example is if we imagine a Catalog, Pricing, and Currency micro-
service. If each of those contains an isolated state of each thing, they
become interdependent. And failure or change in one can cause the
function of the other(s) to fail.

This problem is addressed by replicating state; in other words, provid-
ing a single place to store all state mutations that each isolated micro-
service can rebuild its internal state from. Often, this is coexistent with
event sourcing, where event-driven microservices communicate exclu-
sively via an immutable event log — providing a separate single source
of truth that is consistent but difficult to query. The microservices that
provide the ability to query state, therefore, have done the work of “ma-
terializing a view” of the event log.

This design is, by nature, eventually consistent. While this may seem
like a problem in traditional transactional design, it is ameliorated by
insight into the nature of the design. For example, one might think of a
debit to a bank account as inherently transactional, but most modern
banks have realized that it’s easier to create an eventually consistent
debit (debit if the account exists, and then ensuring against the pos-
sibility the funds are not available) than to expend effort on ensuring
every single transaction is consistent. This represents a newer way of
thinking about IT systems, but enables greater freedom and speed of
change, and, therefore, faster time to value.

40

Replicating state, of course, is challenging. It requires a deep under-
standing of the state being managed, and the behaviors of each micro-
service in order to be predictable. However, it also directly addresses
the problems that emerge from other patterns and, as such, can be
seen as a very specific trade-off. This means eventual — rather than
direct — consistency, cohesion over top-down design, and speed of
change over predictability.

PROBLEM:
It is difficult to achieve data integrity when there are multiple sources of
truth.

SOLUTION:
Keep a single source of truth of all changes to data, and replicate the
data as needed.

APPLICATION:
Send all changes as events to a permanent Event Log. When needing
to query data, build a materialized view by computing all the changes
from the event log.

This is often streamlined by creating snapshots along the way of the
views so that full recomputation is not required every time.

41

IMPACTS:
It creates a very cohesive architecture.

It is extremely scalable, due to the inherent Command-Query Request Separation in the design.

It can be difficult to visualize and understand logical dependencies (physical dependencies
have been explicitly reduced).

GOALS:
Cohesion: this architecture is very easy to work with and understand
due to its standardized nature.

Scalability: it is very scalable.

Speed of change: it is excellent.

KEY TRADE-OFFS:
There is efficient IPC due to asynchronicity.

There is a very flexible design, so speed of change is high.

The data consistency is good with caveats, but there is a single source of truth (typically the
event log).

Scalability is effective; this design prioritizes the ability to scale each piece independently.

The autonomy is very high at the expense of a complex model.

HOW DOES THIS COEXIST WITH EXISTING
SYSTEMS, SOA, OR APIs?
Ironically, this approach can coexist very well with existing systems,
with only one key change: the event log must become the source of

42

truth for anything it contains. This means that existing systems and
APIs can continue to be used, as long as they update the event log and
are updated from it.

This approach can also be used in a strangler pattern way, by migrat-
ing event-by-event to this approach for the services you need to display
speed of change and high scale. This replaces the existing implemen-
tation with a stable pattern to keep the existing system in sync if you
wish.

43

SECTION III:
FOUNDATIONAL BEST PRACTICES FOR
ESTABLISHING THE MICROSERVICES PATTERNS

After reviewing the microservices patterns, and selecting which ones
make the most sense to adopt for the rest of your organization, you
might be tempted to stop there. However, in order to make the archi-
tecture work, there are a number of foundational best practices your
organization needs to adopt in order to get microservices functional.
These best practices are outlined below.

ANTI-FRAGILE SOFTWARE8

It is important to create a sense of predictability to operate a complex
infrastructure at high scale. It is critical to ensure that your software is
designed to be robust in the face of failure on all fronts. You can’t rely
on your infrastructure to be resilient.

This leads microservices developers towards practices that encourage
uninterrupted operation in the face of broad systems failure. While the
concept of “Chaos Engineering” (also pioneered by Netflix) has existed
for some time, the key lessons weren’t that broadly adopted until the
advent of microservices. “Anti-fragility” is a combination of mindset
and specific practice, and some of the key practices include:

8 There are multiple data masters, but the architecture doesn’t typically address the existence of a source of truth or use
a specific consistency model. There are often multiple ways to make a change to data that can have cascading impact,
which is difficult to understand or respond to.

44

12-factor app principles are useful, but shouldn’t be over-applied. Piv-
otal Cloud Foundry was originally based on these principles, but expe-
rience with the myriad of possibilities in real-world scale has recently
led to relaxing some of the more extreme aspects. Nonetheless, most
of these basic principles apply in any situation (e.g. logging as event
streams).

Use intelligent defaults. If configuration files or environment variables
are unavailable for some reason, software should initialize into an oper-
ational state by using reasonable default values.

Manage working directories and temp files. How many times have
you had to fix an error caused when an app tries to write to a directo-
ry that doesn’t exist or the app doesn’t have privileges for? If your app
needs access to a given file or directory, make sure that the code that
accesses it checks for access and creates the file if it needs to.

Avoid race conditions and orchestrated startup. In most cases, soft-
ware is simple enough that it should be launchable in isolation, and
then seek to converge with other components. Many apps today re-
quire a specific start order (a specific example is first the database, then
the app server), and this isn’t necessary. Instead of erroring if a con-
nection is unavailable, start up anyway and try to reconnect on a back-
ing-off timeout.

Make bootstrap bulletproof. You can probably sense a theme from
these items. The goal is to make sure that software components can
start without error (regardless of the runtime environment) and, over
time, seek to reach an ideal state. The benefits of this approach are

45

broad and obvious, but the basic guideline should be that
operators never need to understand the internals of the
software.

Use circuit breakers. These are a pattern. In microser-
vices deployments, they are often implemented as part
of a high-performance inter-process communications
framework like Hystrix or Finagle that detects failures and
provides logic to prevent them from reoccurring. In other
words, it detects an error condition and prevents compo-
nents from attempting to retry the “doomed” action until
the error condition resolves.

Use timeouts. Similar to using intelligent defaults, any ex-
ternal communication should include a timeout. Further, if
many services are involved in an end-to-end scenario, it is
important to think of timeout “budgets.” For example, the
timeout value for the third call in a chain should not be the
same or longer as the timeout for the first call, or else you
can have components still processing “down the chain” for
calls that have already terminated at the edge.

HEALTHZ
A common pattern with microservices is “healthZ,” or, in
other words, apps exposing a known endpoint (/health in
Spring Boot, /healthz as a common pattern) that returns
a simple health check. This check should indicate two
things:

Does this app think that it is healthy? (Yes: 200, No: 5xx).

46

What does it believe its current state to entail? It will return a basic set
of information (e.g. JSON) that describes the current state of its internal
dependencies. These should be readable to an operator — not a dev —
and be self-explanatory - for example “database: connecting”.

Note that health and correct operating state are different: it is common
in container frameworks that a component can be running and healthy
but not yet “ready” for serving traffic (e.g. the database isn’t connect-
ed yet). HealthZ endpoints should indicate when something is really
wrong, not that there is a temporary operational blip.

“INFINITE” (LINEAR) SCALE
Microservices patterns focus a lot on scalability, often with the term
“infinite” scale being bandied about. Of course, this doesn’t mean tru-
ly infinite scale. Instead, it is a shorthand for the idea of having a clear
understanding of how it would be possible with a given piece of soft-
ware to achieve a linear scaling model. Often, this focuses on the hard
limits to scale: storage of data and state management. With microser-
vices, this encourages developers to think about the patterns of data
and storage they are using, and seek a way to perform the task that can
support high scale. For example, this can be achieved by using even-
tually consistent clustered storage instead of relying on transactional
boundaries provided by RDBMSes. Generally, this is a good practice.
Although there is no need to overthink this point, there is value in iden-
tifying what your storage layers are being used for and making sure you
use the “best tool for the job.”

47

MINIMIZE DEPENDENCIES
When you’re deploying many changes frequently, it is important to
ensure that your component has minimal dependencies on exter-
nal systems (for example, by using queues for communication rather
than synchronous request/reply patterns. While microservice patterns
make this almost mandatory, it’s useful in general to make each com-
ponent as self-sufficient as possible. Again, don’t overthink this point,
but a good rule of thumb is to try to make every unit of deployment as
self-contained as you can.

MONITOR EVERYTHING
A sufficiently complex infrastructure requires visibility. Microservices
practitioners learn the hard way that it’s essential to have an effective
monitoring solution baked into their software, and it’s hard to argue
that this shouldn’t be the default state for any well-made app. In an ide-
al state, it is possible to instrument software without requiring changes
in the application code, but following basic practices (e.g. logging as
event streams to STDOUT/STDERR) make it easier to put monitoring
infrastructure in place. This is only half the battle, of course; more mon-
itoring data creates a need to comprehend that data better. The topic
of how to effectively design monitors and to manage monitoring infra-
structure is out of the scope of this paper, but there are many specific
texts on this topic, such as James Turnbull’s “The Art of Monitoring.”

48

REDUCE BATCH SIZE
In Lean Manufacturing, we have learned that there is significant value
in reducing the batch size. Microservices as a set of patterns explicitly
leverage this approach; the smaller the unit you work with, the simpler
each unit is to operate. Of course, the larger the number of units you
have, the more complex the management gets.

However, even without adopting microservice patterns, you can reduce
the size of your unit of deployment by making changes more frequently
and in smaller amounts. Even when deploying a change to a monolith,
the disciplines that come with implementing smaller, more frequent
changes are valuable.

CONTAINERIZATION
The use of containers to structure, isolate, and manage units of deploy-
ment is generally useful, even when applied to monolithic software.
With recent data showing that the use of containers brings no perfor-
mance or security overhead, it is easy to recommend the use of Docker
as a basic unit of deployment. Better yet, microservices patterns gen-
erally require containerization techniques, so adopting containers is a
good step towards being ready for a microservices journey.

FOCUSED (DOMAIN-DRIVEN) DESIGN
Domain-driven design has risen to a new popularity due to its high ap-
plicability to microservices. While, in our experience, overuse of DDD
can be a distraction in a high scale microservices environment, it’s inar-
guable that the practices proposed by DDD are of high value and make

49

a lot of sense to apply in general. Further, we might even argue that
DDD is more appropriate to a monolithic design than it is to microser-
vices patterns and, as such, adopting domain thinking within your soft-
ware will both be helpful and pave an easier transition towards micros-
ervices when or if) you need to make the change.

50

CONCLUSION: ESTABLISH A MICROSERVICES
PATTERN THAT’S RIGHT FOR YOU

Now that you have read through the different microservices patterns,
it’s important for you to assess which ones work best for your organiza-
tion. It could be one, it could be a set, or you might decide to stay with
a monolithic architecture.

The important thing is to remember that microservices are not a cure-
all that will solve all of your problems. It is an architecture designed to
overcome obstacles that, when deployed correctly, will produce certain
desired results.

It has yet to be seen how the patterns discussed here will evolve, and
how software may rise up to simplify the challenges of this highly com-
plex approach. It is clear, however, that many enterprises will move to
adopt microservice patterns, and we hope that by providing some defi-
nition of these patterns we may help many of these organizations to
avoid the most obvious and painful mistakes along the way.

For more information on establishing a microservices architecture in
your organization, take a look at our whitepaper, Microservices Best
Practices, or take a look at the demos in our microservices webinar.

https://www.mulesoft.com/lp/whitepaper/api/microservices-best-practices
https://www.mulesoft.com/lp/whitepaper/api/microservices-best-practices

51

ABOUT MULESOFT

MuleSoft’s mission is to help organizations change and innovate faster
by making it easy to connect the world’s applications, data and devic-
es. With its API-led approach to connectivity, MuleSoft’s market-leading
Anypoint Platform™ is enabling over 1,000 organizations in more than
60 countries to build application networks. For more information, visit
mulesoft.com.
MuleSoft is a registered trademark of MuleSoft, Inc. All other marks are those of respective owners

	contents
	HOW TO CHOOSE THE RIGHT ARCHITECTURE FOR YOUR ORGANIZATION
	INTRODUCTION
	The 6 microservices patterns
	Section I: Introductory patterns
	Fine-grained SOA
	Layered APIs overfine-grained SOA

	Section II: Managed state patterns
	Message-oriented state management over layered APIs
	Event-driven state management over layered APIs
	Isolating state in layered APIs
	Replicating state in layered APIs (event sourcing)

	Section III: Foundational best practices for establishing the microservices patterns
	Conclusion: Establish a microservices pattern that’s right for you
	About MuleSoft
	HOW TO CHOOSE THE RIGHT ARCHITECTURE FOR YOUR ORGANIZATION
	INTRODUCTION
	The 6 microservices patterns
	Section I: Introductory patterns
	Fine-grained SOA
	Layered APIs overfine-grained SOA

	Section II: Managed state patterns
	Message-oriented state management over layered APIs
	Event-driven state management over layered APIs
	Isolating state in layered APIs
	Replicating state in layered APIs (event sourcing)

	Section III: Foundational best practices for establishing the microservices patterns
	Conclusion: Establish a microservices pattern that’s right for you
	About MuleSoft
	contents
	HOW TO CHOOSE THE RIGHT ARCHITECTURE FOR YOUR ORGANIZATION
	INTRODUCTION
	The 6 microservices patterns
	Section I: Introductory patterns
	Fine-grained SOA
	Layered APIs overfine-grained SOA

	Section II: Managed state patterns
	Message-oriented state management over layered APIs
	Event-driven state management over layered APIs
	Isolating state in layered APIs
	Replicating state in layered APIs (event sourcing)

	Section III: Foundational best practices for establishing the microservices patterns
	Conclusion: Establish a microservices pattern that’s right for you
	About MuleSoft

